lre

ca—

Introduction to Numerical Python

Matthijs Douze
SED Grenoble

June 2014

What should | talk about?

e Python (and numpy) is very rich
threshold to make a new library is low — everyone makes libraries!
choose what is worthwhile to present

what is useful for image processing / high-performance computing / PDE
/ machine learning...

e Enable trainees to...
throw-away code, quick visualization and stats
research code — quick prototyping, produce tables and plots
build “systems” (Python is pretty good at this)
e Design choices
as little “magic” as possible
use the most basic tool that fits the task
bottom-up explanation: low-level point-of-view
focus on performance

lrezia— 2/40 June 2014

About me

e At INRIA since 2005,
» LEAR then SED engineer since 2010.
» Mainly image processing
e Python programmer since 2001
e About 60 % of development in Python
» restis C, Matlab, bash, C++, OpenCL, etc.
e Technological late adopter
» new technology only if really, really needed
e Never attended a training session on a technical topic
» rather reference documentation, tutorials, ...
® not a geek (any more). Not a numpy “power user”

e attendents' introductions

lrezia— 3/40

June 2014

O

lr

utline

Python/Numpy wrt. Matlab, C++
Matrix operations

Input/output

Graphical output with Matplotlib
Interfacing with C

Writing parallel applications

LA

4/40

June 2014

Language levels

lr

High-level: developing time > execution time
» objectives: compact, interactive “shell”, backtrace

» drawbacks: slow, dependent on what it available in
libraries, limited static code analysis

Low level: execution time > developing time
» objectives: fast, precise control

» drawbacks: verbose, requires compilation, crashes are
hard to debug

Threshold is moving towards high level

» Moore's law does not apply to programmers...
» 1980: C = high level...

LA

June 2014

Operations language levels

Command- Langage Speed wrt. C

line parsing

GUI Human brain /1079

read XML /text Shell, make /10000

¥ /100

Python, Matlab

read binary

data Java, caml /5
C, Fortran 1

compilation SSE intrinsics, x4
assembler

matrix

multiply CUDA, OpenCL x50

zéa—

June 2014

The Python language compared to Matlab

e Same “level” as Matlab
» interpreted
» automatic memory management

» types are heavy, and always allocated dynamically

sizeof(PyIntObject) = 24 bytes

» to optimize: use library functions to avoid loops

e more datastructures
» hash-table
» object-oriented
® general-purpose language
» scripting
» very rich standard library
web server, 1/0
e differences
» pass-by-reference all over the place
» (0-based indexing
e Matlab = academic pricing 800 E + 200 E / year
» management cost

r

lrezia—~ 7/40

June 2014

The Python language compared to C++

e different language levels
» difficult to compare

e rapid application development
» less verbose
» no compilation

» readable error messages
“IndexError” + stacktrace rather than “segmentation fault”....

e optimization: think in terms of hotspots
® has a standard matrix library: numpy
» instead of 50 matrix libraries

lrezia—~ 8/40

June 2014

Numerical libraries in Python

62’2!22.—-— 9/40

June 2014

Reminder on Python lists

e Python list
» sequence of heterogeneous Python objects

[2, “toto”, False, [4, 5]]

» mutable (tuple and string are not mutable)
e |Implemented as an array of pointers to python objects

lrezia— 10/40

June 2014

Indexing: ranges and slices

*range generates a list
slice notation gets a subset of a list
negative indices count from end of list

0,1, ...,99 range(100)

10, 11, ..., 99 range(10, 100)
0,2, ...,98 range(0, 100, 2)
99,98, ...,0 range(99, -1, -1)

lre

(227 B 11/40

al]
a[10:]
al::2]
al::-1]

June 2014

0-based indexing EWD&31-0
\J'n:a, num\verinﬂ should shart o} zero

[
bounds are always To denote the subsequence of nalural numbers

begin <=i < end 2,3,...,12 without Yhe pernicious Yhree do's, Pour
° Iength of range conventions are open o us:

end — begin a) 2¢ ¢ <13
® in-memory address) 1< ¢ 512

e) 25 (£ A2

mem[i — begin] 4y 1< i <13

ﬂrt ‘there reasons 44:: re?ef‘ one conven}hon Yo
he other? Yes, there are. The observalion thal
conventions o) omd b) have the odvonlcoe Fnat
the diﬁ)e.renca be'thQn the bounds as me:ﬁ‘acned

equa\s }_'\he l_znaﬂm o? -}‘he SM‘baequence 1S \Iﬂ\id.

12/40 June 2014

Coding principles

e For performance,
» use arrays rather than Python's lists
» avoid loops
» functions are implemented in C — no performance penalty
» amortize interpretation cost on large units
® \ector/matrix programming

» like Matlab
> like SIMD
hua..-— 13/40

June 2014

1D numpy arrays

e construction
> arange
» Zeros, ones
» random show
® homogeneous — dtype show
® can be indexed & sliced like list
» indexing by array of indices or booleans show
» slice assignment
® vector operations
» unlike list
» vector-vector operations
» element-vector operations show
® tests
» comparisons produce binary masks
» reduction with all() and any()
® exercises

lrezia— 14/40 June 2014

O

lre

utline

Python/Numpy wrt. Matlab, C++
Matrix operations

Input/output

Graphical output with Matplotlib
Interfacing with C

Writing parallel applications

LA

15/40

June 2014

Central numpy object : the ndarray

e 1D array is an ndarray
e Unlike Matlab: no preference for matrices
® constructors show
> explicit
> empty, ones, zeros
> random
> eye, diag
e Block manipulations
» tile (= Matlab's repmat)
» hstack/vstack
® indexing show
» mixture of 1D array slices — Cartesian product
» if one dimension is not filled in — assumed to be “”
scalar index # direct access in the array (unlike Matlab)
» ndim arrays — array of values picked in the array

0&%22..-— 16/40

June 2014

Data organization

e data organization in memory (generalization of Matlab) whiteboard
> dtype
» shape
» strides
» ndim, size, itemsize, flags
® manipulate data interpretation show
ravel
slicing (+ newaxis)
reshape (+ implicit dimension)
transpose
view
® views / copies
» implicit and not consistent!
» owndata flag

> copy

vV vV v v Y

r

lrezia— 17/40 June 2014

AXxis operations

e operation performed on one dimension (“axis”) of the array
e Reductions

» sum, cumsum, prod

> max, argmax, min, argmin

» all, any

» mean, std
e Sorting

» sort, argsort

lrezia— 18/40 June 2014

Broadcasting

e extends element-wise operations to (some) arrays of different sizes

» compare Matlab: often avoids meshgrid / bsxfun / repmat

10

10

10

20

20

20

30

30

30

10

10

10

20

20

20

30

30

30

10

20

30

012
012
0|12
0(1|2
012
0(1]2

10

10

10

20

20

20

30

30

30

10

10

10

20

20

20

30

30

30

10

20

30

19/40

12

21

22

31

32

0(1(2
0(1]2
0|11]2
0(1(2
012
0 1|2

June 2014

Linear algebra

o “*” does not do matrix multiplication
» use np.dot

e classical BLAS + Lapack linear algebra operators in np.linalg
» svd, gr, cholesky, eig
» linear least-squares, matrix (pseudo-)inverse, etc.

® exercises

0&’2{&.—-— 20/40

June 2014

O

lre

utline

Python/Numpy wrt. Matlab, C++
Matrix operations

Input/output

Graphical output with Matplotlib
Interfacing with C

Writing parallel applications

LA

21/40

June 2014

Input/output

lr

LA

/0, what for?

» files

» network sockets

» pipes to subprocesses
input/output = serialization

» transform to byte array / string
» write it to file object

families

» metadata?

» binary/text?

22/40

June 2014

Native formats

e Python pickle
» serializes all python objects
» works with numpy (but not efficient)
» text format by default
e Numpy format
» stores a matrix
> binary
» can be memory-mapped
® np.save/ np.load show

lrezia— 23/40 June 2014

Read/write text formats

lr

Easiest: read/write from Python

» Python has excellent I/O

» regexp, XML, generators

» — Python list - numpy array

Fastest: read with specialized functions for common formats

» np.fromfile / np.fromstring (with sep="")
reads whitespace separated scalars
output = 1D array, should reshape show

» np.loadtxt / np.savetxt
for matrices
line-oriented format, 1 line per matrix row, whitespace separated
comments with “#” show

Can be used on an open file object
» parse beginning of file with some method, end with another
» supports on-the-fly zipping / unzipping

i — 24/40

June 2014

Read/write binary

e Only a fast option :-)

e a.tofile / a.tostring
» binary representation of the array
» no metadata show

e np.fromfile / np.fromstring
» metadata must be provided (dtype)
» reshape to relevant size

® np.memmap
» memory mapping of a file

e Matlab .mat files
» use scipy.io.loadmat()

® exercises

01/26’62.-—- 25/40

June 2014

O

lr

utline

Python/Numpy wrt. Matlab, C++
Matrix operations

Input/output

Graphical output with Matplotlib
Interfacing with C

Writing parallel applications

LA

26/40

June 2014

Matplotlib

e Similar to Matlab show
» plot, imshow, ...
e Two operating modes: interactive / scripts
> pyplot.ion() / ioff()
> pyplot.show()
e Qutput on screen by default show
» to generate PDF: pyplot.savefig(“xx.pdf”)
® |mages:
» loading: matplotlib.image.imread

h’?m-— 27/40 June 2014

Some vocabulary

variable, symmetric error
/ 15 T T T T T T T
1.0}
0.5}
0.0}
—0.5|
1.0 - - - - - -
title T — vgrlablle, agymmetn; error
—“—
——
—i—
yscale 107 —.—
——
|Og I L
— Mmeasures d \

20 25 30 35 4

® exercises

lrezia— 28/40

June 2014

O

lre

utline

Python/Numpy wrt. Matlab, C++
Matrix operations

Input/output

Graphical output with Matplotlib
Interfacing with C

Writing parallel applications

LA

29/40

June 2014

Calling C code from Python: basics

lre

All data (and code...) in Python is PyObject

» typing info

» reference count

» object-specific info
modules can be implemented
» in Python

» in C — compiled to shared lib

very similar to Matlab/mex
C modules
» loaded by interpreter

dlopen
disym

» format constraints show example

ca—

30/40

return

June 2014

Data conversion

e Always check inputs
» PyXXX_Check
» convenience function: PyArg ParseTuple show

e PyArrayObject contains same fields as the Python object + a pointer to the
array data.

> requires cast

» be careful with strides
e PyArray results can be constructed show example
® To construct tuple results

» symmetric of PyArg_ ParseTuple: Py BuildValue

lrezia— 31/40 June 2014

Compiling

e Command line to produce a shared lib depends on platform
® requires access to includes (and .lib files on Windows)

» distutils.sysconfig.get_python_inc()

> numpy.get _include()

® setup.py can compile the module show
» standard way of distributing and installing modules
» heavyweight for simple projects

gcc -shared -fPIC -l /usr/include/python2.7
toto.c -o toto.so

toto.so

lreeia—~ 32/40 June 2014

Generation of C code made easy (?)

e Tons of translators
e ctypes: call arbitrary dynamic library
» Python does the data conversion
® scipy.weave: inline code
» can compile on-the-fly
® pythran, shedskin:
» converts Python to C++
® pypy:
» ajust-in-time compiler
* f2py
» make Python interfaces for Fortran code

e cython:
» convert annotated Python to C
e SWIG:

» automatically wrap C/C++ library «

r

0&%22..-— 33/40

June 2014

Cython

e Translates Pythonto C _

» support for a subset of the language

» interesting to see how it translates...
show

e Add typing information to Python code
» then cython can optimize operations —

cython toto.pyx

involving only typed variables
> progressive path to optimization gcc -shared -fPIC - /usr/include/python2.7
e Support for numpy arrays toto.c -o toto.so
» cinclude numpy #
toto.so

e Appropriate when starting from Python
code...

» hard to focus on low-level
optimization

lrezia— 34/40 June 2014

Simple Wrapper and Interface Generator

e Parses C headers to generate wrapper code
e (Generates wrappers for all functions found in the header

» discovers undefined functions!
e data conversions...

® reasonable defaults for standard types show

» scalar types
» const char*

/

» struct/ class

» good support for C++ STL

e customizable for
everything else

» typemaps

e useful for existing C/C++ libraries

toto.i
v
swig -python toto.i
\
toto_wrap.c
v v

gcc -shared -fPIC -I /usr/include/python2.7
toto_wrap.c toto.c -o _toto.so

> complex for small projects v v
* exercices toto.py _toto.so
35/40 June 2014

O

lr

utline

Python/Numpy wrt. Matlab, C++
Matrix operations

Input/output

Graphical output with Matplotlib
Interfacing with C

Writing parallel applications

LA

36/40

June 2014

Parallelization

e Use several cores/processors from the same Python code
e Useful for I/O: 1 processor per input or output
» web server
» user interface show
e Parallelizing heavy computations
» multiprocessor/core machines
» 1 processor per task
» visible in top
e (lassical usage patterns
» fixed processor layout
» parallel map «
» producer-consumer
e 3 parallelization levels (lightest — heaviest)
» C-level, code parallelized show
» threads
» Sub-processes

r

0&7462..-— 37/40 June 2014

Threading

e Python can create threads
map to system threads
e Dbut global interpreter lock whiteboard
all Python instructions are atomic
simplifies synchronization all over the place
makes multithreading pure Python code useless :-(
e in C: safe to release GIL when there is no call to the Python API
most numpy functions release the GIL

C API
Py_BEGIN_ALLOW_THREADS / Py_END_ALLOW_THREADS
in cython
with nogil: %exception {
, Py_BEGIN_ALLOW_THREADS
in SWIG $action

Py_END_ALLOW_THREADS
}
® multiprocessing.dummy.Pool
implements a map function

r

h?fa’— 38/40

June 2014

Multiprocessing

e multiprocessing avoids the GIL
» duplicates the whole Python process

» not same address space — requires serialization/deserialization or
shared mem

e multiprocessing.Pool has a map function
® quick-and-dirty tests
» bad behavior with exceptions
» performance penalty due to serialization and context switches

® exercise

h’?ﬂ&,ﬂf— 39/40

June 2014

End

lr

Longer exercises

LA

40/40

June 2014

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

