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What should | talk about?

e Python (and numpy) is very rich
threshold to make a new library is low — everyone makes libraries!
choose what is worthwhile to present

what is useful for image processing / high-performance computing / PDE
/ machine learning...

e Enable trainees to...
throw-away code, quick visualization and stats
research code — quick prototyping, produce tables and plots
build “systems” (Python is pretty good at this)
e Design choices
as little “magic” as possible
use the most basic tool that fits the task
bottom-up explanation: low-level point-of-view
focus on performance
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About me

e At INRIA since 2005,
» LEAR then SED engineer since 2010.
» Mainly image processing
e Python programmer since 2001
e About 60 % of development in Python
» restis C, Matlab, bash, C++, OpenCL, etc.
e Technological late adopter
» new technology only if really, really needed
e Never attended a training session on a technical topic
» rather reference documentation, tutorials, ...
® not a geek (any more). Not a numpy “power user”

e attendents' introductions
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Language levels
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High-level: developing time > execution time
» objectives: compact, interactive “shell”, backtrace

» drawbacks: slow, dependent on what it available in
libraries, limited static code analysis

Low level: execution time > developing time
» objectives: fast, precise control

» drawbacks: verbose, requires compilation, crashes are
hard to debug

Threshold is moving towards high level

» Moore's law does not apply to programmers...
» 1980: C = high level...
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Operations language levels

Command- Langage Speed wrt. C

line parsing

GUI Human brain /1079

read XML /text Shell, make /10000

¥ /100

Python, Matlab

read binary

data Java, caml /5
C, Fortran 1

compilation SSE intrinsics, x4
assembler

matrix

multiply CUDA, OpenCL x50
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The Python language compared to Matlab

e Same “level” as Matlab
» interpreted
» automatic memory management

» types are heavy, and always allocated dynamically

sizeof(PyIntObject) = 24 bytes

» to optimize: use library functions to avoid loops

e more datastructures
» hash-table
» object-oriented
® general-purpose language
» scripting
» very rich standard library
web server, 1/0
e differences
» pass-by-reference all over the place
» (0-based indexing
e Matlab = academic pricing 800 E + 200 E / year
» management cost

r
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The Python language compared to C++

e different language levels
» difficult to compare

e rapid application development
» less verbose
» no compilation

» readable error messages
“IndexError” + stacktrace rather than “segmentation fault”....

e optimization: think in terms of hotspots
® has a standard matrix library: numpy
» instead of 50 matrix libraries
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Numerical libraries in Python
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Reminder on Python lists

e Python list
» sequence of heterogeneous Python objects

[2, “toto”, False, [4, 5]]

» mutable (tuple and string are not mutable)
e |Implemented as an array of pointers to python objects
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Indexing: ranges and slices

*range generates a list
slice notation gets a subset of a list
negative indices count from end of list

0,1, ...,99 range(100)

10, 11, ..., 99 range(10, 100)
0,2, ...,98 range(0, 100, 2)
99,98, ...,0 range(99, -1, -1)

lre
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0-based indexing EWD&31-0
\J'n:a, num\verinﬂ should shart o} zero

[
bounds are always To denote the subsequence of nalural numbers

begin <=i < end 2,3,...,12 without Yhe pernicious Yhree do's, Pour
° Iength of range conventions are open o us:

end — begin a)  2¢ ¢ <13
® in-memory address ) 1< ¢ 512

e) 25 ( £ A2

mem[i — begin] 4y 1< i <13
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Coding principles

e For performance,
» use arrays rather than Python's lists
» avoid loops
» functions are implemented in C — no performance penalty
» amortize interpretation cost on large units
® \ector/matrix programming

» like Matlab
> like SIMD
hua..-— 13/40

June 2014



1D numpy arrays

e construction
> arange
» Zeros, ones
» random show
® homogeneous — dtype show
® can be indexed & sliced like list
» indexing by array of indices or booleans show
» slice assignment
® vector operations
» unlike list
» vector-vector operations
» element-vector operations show
® tests
» comparisons produce binary masks
» reduction with all() and any()
® exercises
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Central numpy object : the ndarray

e 1D array is an ndarray
e Unlike Matlab: no preference for matrices
® constructors show
> explicit
> empty, ones, zeros
> random
> eye, diag
e Block manipulations
» tile (= Matlab's repmat)
» hstack/vstack
® indexing show
» mixture of 1D array slices — Cartesian product
» if one dimension is not filled in — assumed to be “”
scalar index # direct access in the array (unlike Matlab)
» ndim arrays — array of values picked in the array
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Data organization

e data organization in memory (generalization of Matlab) whiteboard
> dtype
» shape
» strides
» ndim, size, itemsize, flags
® manipulate data interpretation show
ravel
slicing (+ newaxis)
reshape (+ implicit dimension)
transpose
view
® views / copies
» implicit and not consistent!
» owndata flag

> copy

vV vV v v Y

r
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AXxis operations

e operation performed on one dimension (“axis”) of the array
e Reductions

» sum, cumsum, prod

> max, argmax, min, argmin

» all, any

» mean, std
e Sorting

» sort, argsort
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Broadcasting

e extends element-wise operations to (some) arrays of different sizes

» compare Matlab: often avoids meshgrid / bsxfun / repmat
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Linear algebra

o “*” does not do matrix multiplication
» use np.dot

e classical BLAS + Lapack linear algebra operators in np.linalg
» svd, gr, cholesky, eig
» linear least-squares, matrix (pseudo-)inverse, etc.

® exercises
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Input/output
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LA

/0, what for?

» files

» network sockets

» pipes to subprocesses
input/output = serialization

» transform to byte array / string
» write it to file object

families

» metadata?

» binary/text?
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Native formats

e Python pickle
» serializes all python objects
» works with numpy (but not efficient)
» text format by default
e Numpy format
» stores a matrix
> binary
» can be memory-mapped
® np.save/ np.load show
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Read/write text formats
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Easiest: read/write from Python

» Python has excellent I/O

» regexp, XML, generators

» — Python list - numpy array

Fastest: read with specialized functions for common formats

» np.fromfile / np.fromstring (with sep="")
reads whitespace separated scalars
output = 1D array, should reshape show

» np.loadtxt / np.savetxt
for matrices
line-oriented format, 1 line per matrix row, whitespace separated
comments with “#” show

Can be used on an open file object
» parse beginning of file with some method, end with another
» supports on-the-fly zipping / unzipping
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Read/write binary

e Only a fast option :-)

e a.tofile / a.tostring
» binary representation of the array
» no metadata show

e np.fromfile / np.fromstring
» metadata must be provided (dtype)
» reshape to relevant size

® np.memmap
» memory mapping of a file

e Matlab .mat files
» use scipy.io.loadmat()

® exercises
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Matplotlib

e Similar to Matlab show
» plot, imshow, ...
e Two operating modes: interactive / scripts
> pyplot.ion() / ioff()
> pyplot.show()
e Qutput on screen by default show
» to generate PDF: pyplot.savefig(“xx.pdf”)
® |mages:
» loading: matplotlib.image.imread
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Some vocabulary

variable, symmetric error
/ 15 T T T T T T T
1.0}
0.5}
0.0}
—0.5|
1.0 - - - - - -
title T — vgrlablle, agymmetn; error
—“—
——
—i—
yscale 107 —.—
——
|Og I L
—  Mmeasures d \

20 25 30 35 4

® exercises
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Calling C code from Python: basics

lre

All data (and code...) in Python is PyObject

» typing info

» reference count

» object-specific info
modules can be implemented
» in Python

» in C — compiled to shared lib

very similar to Matlab/mex
C modules
» loaded by interpreter

dlopen
disym

» format constraints show example

ca—
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Data conversion

e Always check inputs
»  PyXXX_Check
» convenience function: PyArg ParseTuple show

e PyArrayObject contains same fields as the Python object + a pointer to the
array data.

> requires cast

» be careful with strides
e PyArray results can be constructed show example
® To construct tuple results

» symmetric of PyArg_ ParseTuple: Py BuildValue
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Compiling

e Command line to produce a shared lib depends on platform
® requires access to includes (and .lib files on Windows)

» distutils.sysconfig.get_python_inc()

> numpy.get _include()

® setup.py can compile the module show
» standard way of distributing and installing modules
» heavyweight for simple projects

gcc -shared -fPIC -l /usr/include/python2.7
toto.c -o toto.so

toto.so
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Generation of C code made easy (?)

e Tons of translators
e ctypes: call arbitrary dynamic library
» Python does the data conversion
® scipy.weave: inline code
» can compile on-the-fly
® pythran, shedskin:
» converts Python to C++
® pypy:
» ajust-in-time compiler
* f2py
» make Python interfaces for Fortran code

e cython:
» convert annotated Python to C
e SWIG:

» automatically wrap C/C++ library «

r
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Cython

e Translates Pythonto C _

» support for a subset of the language

» interesting to see how it translates...
show

e Add typing information to Python code
» then cython can optimize operations —

cython toto.pyx

involving only typed variables
> progressive path to optimization gcc -shared -fPIC - /usr/include/python2.7
e Support for numpy arrays toto.c -o toto.so
» cinclude numpy #
toto.so

e Appropriate when starting from Python
code...

» hard to focus on low-level
optimization
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Simple Wrapper and Interface Generator

e Parses C headers to generate wrapper code
e (Generates wrappers for all functions found in the header

» discovers undefined functions!
e data conversions...

® reasonable defaults for standard types show

» scalar types
» const char*

/

» struct/ class

» good support for C++ STL

e customizable for
everything else

» typemaps

e useful for existing C/C++ libraries

toto.i
v
swig -python toto.i
\
toto_wrap.c
v v

gcc -shared -fPIC -I /usr/include/python2.7
toto_wrap.c toto.c -o _toto.so

> complex for small projects v v
* exercices toto.py _toto.so
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Parallelization

e Use several cores/processors from the same Python code
e Useful for I/O: 1 processor per input or output
» web server
» user interface show
e Parallelizing heavy computations
» multiprocessor/core machines
» 1 processor per task
» visible in top
e (lassical usage patterns
» fixed processor layout
» parallel map «
» producer-consumer
e 3 parallelization levels (lightest — heaviest)
» C-level, code parallelized show
» threads
» Sub-processes

r
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Threading

e Python can create threads
map to system threads
e Dbut global interpreter lock whiteboard
all Python instructions are atomic
simplifies synchronization all over the place
makes multithreading pure Python code useless :-(
e in C: safe to release GIL when there is no call to the Python API
most numpy functions release the GIL

C API
Py_BEGIN_ALLOW_THREADS / Py_END_ALLOW_THREADS
in cython
with nogil: %exception {
, Py_BEGIN_ALLOW_THREADS
in SWIG $action

Py_END_ALLOW_THREADS
}
® multiprocessing.dummy.Pool
implements a map function

r
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Multiprocessing

e multiprocessing avoids the GIL
» duplicates the whole Python process

» not same address space — requires serialization/deserialization or
shared mem

e multiprocessing.Pool has a map function
® quick-and-dirty tests
» bad behavior with exceptions
» performance penalty due to serialization and context switches

® exercise
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End
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Longer exercises
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