
Thomas Calmant INRIA Grenoble Rhône-Alpes SED/Tyrex September 2018

Introduction to
Containerization with

Thomas Calmant - Contenerization with Docker or Singularity : an introduction September 2018 – 2

1
A bit of context

The big questions

For administrators and packagers:
I How to ensure an application will work (nearly) everywhere ?
I How to avoid it messing with my system ?
I How to isolate the various components of my application ?

For developers:
I How to ensure everybody has the same build environment ?
I How to provide a sample to reproduce a bug ?

Thomas Calmant - An Introduction to Docker September 2018 – 3

The big questions

For administrators and packagers:
I How to ensure an application will work (nearly) everywhere ?
I How to avoid it messing with my system ?
I How to isolate the various components of my application ?

For developers:
I How to ensure everybody has the same build environment ?
I How to provide a sample to reproduce a bug ?

Thomas Calmant - An Introduction to Docker September 2018 – 3

The Concept of Container
Concept of Containerization from freight transport

Transport

I can be (un-)loaded/stacked efficiently
I can be loaded on ships, trains, trucks, . . .
I can be handled without being opened

 I OpenContainer Runtime Specification

I are tracked with an identification number
I have ISO-standard sizes (5 classes)

}
I OpenContainer Image Specification

Isolation

Thomas Calmant - An Introduction to Docker September 2018 – 4

The Concept of Container
Concept of Containerization from freight transport

Transport

I can be (un-)loaded/stacked efficiently
I can be loaded on ships, trains, trucks, . . .
I can be handled without being opened

 I OpenContainer Runtime Specification

I are tracked with an identification number
I have ISO-standard sizes (5 classes)

}
I OpenContainer Image Specification

Isolation

Thomas Calmant - An Introduction to Docker September 2018 – 4

The Concept of Container
Concept of Containerization from freight transport

Transport

I can be (un-)loaded/stacked efficiently
I can be loaded on ships, trains, trucks, . . .
I can be handled without being opened

 I OpenContainer Runtime Specification

I are tracked with an identification number
I have ISO-standard sizes (5 classes)

}
I OpenContainer Image Specification

Isolation

Thomas Calmant - An Introduction to Docker September 2018 – 4

A history of Isolation

1979 chroot (Version 7 Unix)
2000 jail (FreeBSD 4.0)
2005 Solaris Containers: “chroot on steroids” (Solaris 10)

2008/01 cgroups: Task Control Groups (Linux Kernel 2.6.24)
2008/08 LXC: Linux Containers (based on cgroups)
2013/02 User Namespaces (Linux Kernel 3.8)
2013/03 Docker (based on LXC, DevOps-oriented),

announced in a Lightning Talk at PyCon 2013
2015/06 Open Container Initiative (by Docker)

2016/04 Singularity (HPC-oriented)

Thomas Calmant - An Introduction to Docker September 2018 – 5

A history of Isolation

1979 chroot (Version 7 Unix)
2000 jail (FreeBSD 4.0)
2005 Solaris Containers: “chroot on steroids” (Solaris 10)

2008/01 cgroups: Task Control Groups (Linux Kernel 2.6.24)
2008/08 LXC: Linux Containers (based on cgroups)
2013/02 User Namespaces (Linux Kernel 3.8)

2013/03 Docker (based on LXC, DevOps-oriented),
announced in a Lightning Talk at PyCon 2013

2015/06 Open Container Initiative (by Docker)

2016/04 Singularity (HPC-oriented)

Thomas Calmant - An Introduction to Docker September 2018 – 5

A history of Isolation

1979 chroot (Version 7 Unix)
2000 jail (FreeBSD 4.0)
2005 Solaris Containers: “chroot on steroids” (Solaris 10)

2008/01 cgroups: Task Control Groups (Linux Kernel 2.6.24)
2008/08 LXC: Linux Containers (based on cgroups)
2013/02 User Namespaces (Linux Kernel 3.8)
2013/03 Docker (based on LXC, DevOps-oriented),

announced in a Lightning Talk at PyCon 2013
2015/06 Open Container Initiative (by Docker)

2016/04 Singularity (HPC-oriented)

Thomas Calmant - An Introduction to Docker September 2018 – 5

A history of Isolation

1979 chroot (Version 7 Unix)
2000 jail (FreeBSD 4.0)
2005 Solaris Containers: “chroot on steroids” (Solaris 10)

2008/01 cgroups: Task Control Groups (Linux Kernel 2.6.24)
2008/08 LXC: Linux Containers (based on cgroups)
2013/02 User Namespaces (Linux Kernel 3.8)
2013/03 Docker (based on LXC, DevOps-oriented),

announced in a Lightning Talk at PyCon 2013
2015/06 Open Container Initiative (by Docker)

2016/04 Singularity (HPC-oriented)

Thomas Calmant - An Introduction to Docker September 2018 – 5

Virtualization vs. Containerization

Type II Virtual Machine Containerization

Application

Guest OS

VM Devices
VM2

Application

Guest OS

VM Devices
VM1
Hypervisor

Host OS

Host Devices

Application

Bins/Libs

Container2

Application

Bins/Libs

Container1

Host OS Container Engine

Host Devices

I Ability to run different kernel/OS
I Possibility to attach some of host

devices

I Shared Kernel, handling isolation
I Kernel-handled virtual devices

(network)

Thomas Calmant - An Introduction to Docker September 2018 – 6

Different targets, different advantages

Virtualization
I Best isolation from the host
I Fine tuned resource quota

I Runs any guest OS
I Lots of management tools

Containerization
I Good enough isolation
I Benefit from kernel

optimizations & quota
I Very low footprint
I Ease of use

Thomas Calmant - An Introduction to Docker September 2018 – 7

Agenda

1. A bit of context (we just did it)
2. Docker:

I Playing with docker
I Docker images & registry
I Docker compositions
I Security (kind of)

3. Singularity
I Short introduction to singularity
I Singularity vs. Docker

4. Miscellaneous & Bonus (if you’re good ©)

Thomas Calmant - An Introduction to Docker September 2018 – 8

Thomas Calmant - Contenerization with Docker or Singularity : an introduction September 2018 – 9

2
Playing with docker
Because nothing beats the
command line

Warm up

I Check if docker works:
I docker info
I docker run hello-world

I If it fails...
I Check if docker is installed (docker-ce package)

I docs.docker.com/install/linux/docker-ce/debian/

I Check if your user is in the docker group:
groups | grep docker

I If not:
I Add yourself in: sudo gpasswd -a $USER docker
I Restart your session (terminal won’t be enough)

Thomas Calmant - An Introduction to Docker September 2018 – 10

https://docs.docker.com/install/linux/docker-ce/debian/

Docker on a Linux system

I On your machine:
I Docker storage: /var/lib/docker

I Only root can access this folder
I Contains images, volumes and containers storage

I Docker UNIX Socket: /var/run/docker.sock
I Only root and the docker group can access it
I Default & recommended access to the local Docker Daemon

I Docker can access remote locations:
I Docker Daemon:

I Docker official registry: Docker Hub
I Private registries

I Docker CLI
I Manage a remote daemon via TCP/TLS
I Manage a Docker Swarm

Thomas Calmant - An Introduction to Docker September 2018 – 11

Docker on a Linux system

I On your machine:
I Docker storage: /var/lib/docker

I Only root can access this folder
I Contains images, volumes and containers storage

I Docker UNIX Socket: /var/run/docker.sock
I Only root and the docker group can access it
I Default & recommended access to the local Docker Daemon

I Docker can access remote locations:
I Docker Daemon:

I Docker official registry: Docker Hub
I Private registries

I Docker CLI
I Manage a remote daemon via TCP/TLS
I Manage a Docker Swarm

Thomas Calmant - An Introduction to Docker September 2018 – 11

Docker on a Linux system

I On your machine:
I Docker storage: /var/lib/docker

I Only root can access this folder
I Contains images, volumes and containers storage

I Docker UNIX Socket: /var/run/docker.sock
I Only root and the docker group can access it
I Default & recommended access to the local Docker Daemon

I Docker can access remote locations:
I Docker Daemon:

I Docker official registry: Docker Hub
I Private registries

I Docker CLI
I Manage a remote daemon via TCP/TLS
I Manage a Docker Swarm

Thomas Calmant - An Introduction to Docker September 2018 – 11

Hands on: Running a container

I docker run debian

I Starts a container based on the debian image
I No stdin, so bash exits immediately (end of file)

I docker run -it --name MyContainer debian

I -i: interactive mode (with stdin, stdout, stderr)
I -t: with a valid TTY (screen size, coloration, . . .)
I --name: Set a name to ease management (unique per host)

I docker ps

-a

I Prints the list of active containers
I -a: also shows stopped containers

I docker rm

-f

<CID/name>

I Removes a stopped container
I -f stops the container if necessary

Thomas Calmant - An Introduction to Docker September 2018 – 12

Hands on: Running a container

I docker run debian

I Starts a container based on the debian image
I No stdin, so bash exits immediately (end of file)

I docker run -it --name MyContainer debian

I -i: interactive mode (with stdin, stdout, stderr)
I -t: with a valid TTY (screen size, coloration, . . .)
I --name: Set a name to ease management (unique per host)

I docker ps

-a

I Prints the list of active containers
I -a: also shows stopped containers

I docker rm

-f

<CID/name>

I Removes a stopped container
I -f stops the container if necessary

Thomas Calmant - An Introduction to Docker September 2018 – 12

Hands on: Running a container

I docker run debian
I Starts a container based on the debian image
I No stdin, so bash exits immediately (end of file)

I docker run -it --name MyContainer debian

I -i: interactive mode (with stdin, stdout, stderr)
I -t: with a valid TTY (screen size, coloration, . . .)
I --name: Set a name to ease management (unique per host)

I docker ps

-a

I Prints the list of active containers
I -a: also shows stopped containers

I docker rm

-f

<CID/name>

I Removes a stopped container
I -f stops the container if necessary

Thomas Calmant - An Introduction to Docker September 2018 – 12

Hands on: Running a container

I docker run debian
I Starts a container based on the debian image
I No stdin, so bash exits immediately (end of file)

I docker run -it --name MyContainer debian
I -i: interactive mode (with stdin, stdout, stderr)
I -t: with a valid TTY (screen size, coloration, . . .)
I --name: Set a name to ease management (unique per host)

I docker ps

-a

I Prints the list of active containers
I -a: also shows stopped containers

I docker rm

-f

<CID/name>

I Removes a stopped container
I -f stops the container if necessary

Thomas Calmant - An Introduction to Docker September 2018 – 12

Hands on: Running a container

I docker run debian
I Starts a container based on the debian image
I No stdin, so bash exits immediately (end of file)

I docker run -it --name MyContainer debian
I -i: interactive mode (with stdin, stdout, stderr)
I -t: with a valid TTY (screen size, coloration, . . .)
I --name: Set a name to ease management (unique per host)

I docker ps

-a

I Prints the list of active containers

I -a: also shows stopped containers

I docker rm

-f

<CID/name>

I Removes a stopped container
I -f stops the container if necessary

Thomas Calmant - An Introduction to Docker September 2018 – 12

Hands on: Running a container

I docker run debian
I Starts a container based on the debian image
I No stdin, so bash exits immediately (end of file)

I docker run -it --name MyContainer debian
I -i: interactive mode (with stdin, stdout, stderr)
I -t: with a valid TTY (screen size, coloration, . . .)
I --name: Set a name to ease management (unique per host)

I docker ps -a
I Prints the list of active containers
I -a: also shows stopped containers

I docker rm

-f

<CID/name>

I Removes a stopped container
I -f stops the container if necessary

Thomas Calmant - An Introduction to Docker September 2018 – 12

Hands on: Running a container

I docker run debian
I Starts a container based on the debian image
I No stdin, so bash exits immediately (end of file)

I docker run -it --name MyContainer debian
I -i: interactive mode (with stdin, stdout, stderr)
I -t: with a valid TTY (screen size, coloration, . . .)
I --name: Set a name to ease management (unique per host)

I docker ps -a
I Prints the list of active containers
I -a: also shows stopped containers

I docker rm

-f

<CID/name>
I Removes a stopped container

I -f stops the container if necessary

Thomas Calmant - An Introduction to Docker September 2018 – 12

Hands on: Running a container

I docker run debian
I Starts a container based on the debian image
I No stdin, so bash exits immediately (end of file)

I docker run -it --name MyContainer debian
I -i: interactive mode (with stdin, stdout, stderr)
I -t: with a valid TTY (screen size, coloration, . . .)
I --name: Set a name to ease management (unique per host)

I docker ps -a
I Prints the list of active containers
I -a: also shows stopped containers

I docker rm -f <CID/name>
I Removes a stopped container
I -f stops the container if necessary

Thomas Calmant - An Introduction to Docker September 2018 – 12

Docker Registry: local cache and registry

docker run debian ...

Docker Daemon

Docker Hub Registry

Check

Thomas Calmant - An Introduction to Docker September 2018 – 13

Docker Registry: local cache and registry

docker run debian ...

Docker Daemon

Docker Hub Registry

Search

Thomas Calmant - An Introduction to Docker September 2018 – 13

Docker Registry: local cache and registry

docker run debian ...

Docker Daemon

Docker Hub Registry

Search

Download

Thomas Calmant - An Introduction to Docker September 2018 – 13

Docker Registry: local cache and registry

docker run debian ...

Docker Daemon

Container xxx

Docker Hub Registry

Load

Thomas Calmant - An Introduction to Docker September 2018 – 13

Running inside a container

I docker run --name MyContainer -d debian sleep 60
I The container is started detached (-d)

I docker exec -it MyContainer bash

I Starts a new bash process in the container

Docker Daemon

sleep 60

PID 1

Thomas Calmant - An Introduction to Docker September 2018 – 14

Running inside a container

I docker run --name MyContainer -d debian sleep 60
I The container is started detached (-d)

I docker exec -it MyContainer bash
I Starts a new bash process in the container

Docker Daemon

sleep 60

PID 1
bash

PID 7

Thomas Calmant - An Introduction to Docker September 2018 – 14

Container life cycle

Created

Dead

Stopped Running Paused

run

stop

rm

Thomas Calmant - An Introduction to Docker September 2018 – 15

Container life cycle

Created

Dead

Stopped Running Paused

run

stop

killrm

Thomas Calmant - An Introduction to Docker September 2018 – 15

Container life cycle

Created

Dead

Stopped Running Paused

run

stop

killrm

create start

Thomas Calmant - An Introduction to Docker September 2018 – 15

Container life cycle

Created

Dead

Stopped Running Paused

run

stop

killrm

create start pause

unpause

Thomas Calmant - An Introduction to Docker September 2018 – 15

A word on life cycle

I Container file system is set up before the initial state
(created)

I It is cleaned up when going to the Dead state (with rm)
I It is persistent across stop/start/pause operations

I The kill command sends a SIGKILL to the contained
executable

I When running without a TTY, signals aren’t forwarded
I They are handled by the docker command, not by the

contained executable
I A SIGINT will therefore end the container with a SIGKILL

Thomas Calmant - An Introduction to Docker September 2018 – 16

A journey through Docker Commands (1/6)

Step 1
(Host)

Start a new container:
docker run -it ubuntu bash

Step 2
(Docker)

Create a file in the container:
echo "Hello, World" > /root/greetings.txt

Step 3
(Docker)

Print the hostname of the container (its ID):
hostname

Step 4
(Docker)

Detach from the container:
Press Ctrl+P Ctrl+Q

Step 5
(Host)

Keep track the Container ID:
CID="ID_obtained_in_step_3"

Thomas Calmant - An Introduction to Docker September 2018 – 17

A journey through Docker Commands (1/6)

Step 1
(Host)

Start a new container:
docker run -it ubuntu bash

Step 2
(Docker)

Create a file in the container:
echo "Hello, World" > /root/greetings.txt

Step 3
(Docker)

Print the hostname of the container (its ID):
hostname

Step 4
(Docker)

Detach from the container:
Press Ctrl+P Ctrl+Q

Step 5
(Host)

Keep track the Container ID:
CID="ID_obtained_in_step_3"

Thomas Calmant - An Introduction to Docker September 2018 – 17

A journey through Docker Commands (1/6)

Step 1
(Host)

Start a new container:
docker run -it ubuntu bash

Step 2
(Docker)

Create a file in the container:
echo "Hello, World" > /root/greetings.txt

Step 3
(Docker)

Print the hostname of the container (its ID):
hostname

Step 4
(Docker)

Detach from the container:
Press Ctrl+P Ctrl+Q

Step 5
(Host)

Keep track the Container ID:
CID="ID_obtained_in_step_3"

Thomas Calmant - An Introduction to Docker September 2018 – 17

A journey through Docker Commands (1/6)

Step 1
(Host)

Start a new container:
docker run -it ubuntu bash

Step 2
(Docker)

Create a file in the container:
echo "Hello, World" > /root/greetings.txt

Step 3
(Docker)

Print the hostname of the container (its ID):
hostname

Step 4
(Docker)

Detach from the container:
Press Ctrl+P Ctrl+Q

Step 5
(Host)

Keep track the Container ID:
CID="ID_obtained_in_step_3"

Thomas Calmant - An Introduction to Docker September 2018 – 17

A journey through Docker Commands (2/6)

Step 6
(Host)

Copy the file from the container:
docker cp ${CID}:/root/greetings.txt \

greetings.txt

Step 7
(Host)

Edit/create a file on the host:
echo "Hello from host" > host.txt

Step 8
(Host)

Send the file to the container:
docker cp host.txt ${CID}:/root/host.txt

Thomas Calmant - An Introduction to Docker September 2018 – 18

A journey through Docker Commands (2/6)

Step 6
(Host)

Copy the file from the container:
docker cp ${CID}:/root/greetings.txt \

greetings.txt

Step 7
(Host)

Edit/create a file on the host:
echo "Hello from host" > host.txt

Step 8
(Host)

Send the file to the container:
docker cp host.txt ${CID}:/root/host.txt

Thomas Calmant - An Introduction to Docker September 2018 – 18

A journey through Docker Commands (2/6)

Step 6
(Host)

Copy the file from the container:
docker cp ${CID}:/root/greetings.txt \

greetings.txt

Step 7
(Host)

Edit/create a file on the host:
echo "Hello from host" > host.txt

Step 8
(Host)

Send the file to the container:
docker cp host.txt ${CID}:/root/host.txt

Thomas Calmant - An Introduction to Docker September 2018 – 18

A journey through Docker Commands (3/6)

Step 9
(Host)

Reconnect the container:
docker attach $CID

Step 10
(Docker)

Check the new file:
cat /root/host.txt

Step 11
(Docker)

Re-detach the container (Ctrl+P Ctrl+Q)

Thomas Calmant - An Introduction to Docker September 2018 – 19

A journey through Docker Commands (3/6)

Step 9
(Host)

Reconnect the container:
docker attach $CID

Step 10
(Docker)

Check the new file:
cat /root/host.txt

Step 11
(Docker)

Re-detach the container (Ctrl+P Ctrl+Q)

Thomas Calmant - An Introduction to Docker September 2018 – 19

A journey through Docker Commands (4/6)

Step 12
(Host)

List the modified files:
docker diff $CID

Step 13
(Host)

Look what has been written to stdout/stderr:
docker logs $CID

Step 14
(Host)

Export the content:
docker export --output content.tar $CID

Thomas Calmant - An Introduction to Docker September 2018 – 20

A journey through Docker Commands (4/6)

Step 12
(Host)

List the modified files:
docker diff $CID

Step 13
(Host)

Look what has been written to stdout/stderr:
docker logs $CID

Step 14
(Host)

Export the content:
docker export --output content.tar $CID

Thomas Calmant - An Introduction to Docker September 2018 – 20

A journey through Docker Commands (4/6)

Step 12
(Host)

List the modified files:
docker diff $CID

Step 13
(Host)

Look what has been written to stdout/stderr:
docker logs $CID

Step 14
(Host)

Export the content:
docker export --output content.tar $CID

Thomas Calmant - An Introduction to Docker September 2018 – 20

A journey through Docker Commands (5/6)

Step 15
(Host)

Execute a detached process:
docker exec -d $CID sleep 1h

Step 16
(Host)

View running processes:
docker exec $CID ps aux

docker top $CID

aux

ps aux

Step 17
(Host)

Execute an interactive process:
docker exec -it $CID bash

Thomas Calmant - An Introduction to Docker September 2018 – 21

A journey through Docker Commands (5/6)

Step 15
(Host)

Execute a detached process:
docker exec -d $CID sleep 1h

Step 16
(Host)

View running processes:
docker exec $CID ps aux

docker top $CID

aux

ps aux

Step 17
(Host)

Execute an interactive process:
docker exec -it $CID bash

Thomas Calmant - An Introduction to Docker September 2018 – 21

A journey through Docker Commands (5/6)

Step 15
(Host)

Execute a detached process:
docker exec -d $CID sleep 1h

Step 16
(Host)

View running processes:
docker exec $CID ps aux

docker top $CID

aux

ps aux

Step 17
(Host)

Execute an interactive process:
docker exec -it $CID bash

Thomas Calmant - An Introduction to Docker September 2018 – 21

A journey through Docker Commands (5/6)

Step 15
(Host)

Execute a detached process:
docker exec -d $CID sleep 1h

Step 16
(Host)

View running processes:
docker exec $CID ps aux

docker top $CID aux

ps aux

Step 17
(Host)

Execute an interactive process:
docker exec -it $CID bash

Thomas Calmant - An Introduction to Docker September 2018 – 21

A journey through Docker Commands (5/6)

Step 15
(Host)

Execute a detached process:
docker exec -d $CID sleep 1h

Step 16
(Host)

View running processes:
docker exec $CID ps aux

docker top $CID aux

ps aux

Step 17
(Host)

Execute an interactive process:
docker exec -it $CID bash

Thomas Calmant - An Introduction to Docker September 2018 – 21

A journey through Docker Commands (6/6)
Step 18
(Host)

Stop the container (from the host):
docker stop $CID

Step 19
(Host)

See reclaimable space:
docker system df

Step 20
(Host)

Clean up:
docker container prune

docker volume prune

docker image prune

All in one:
docker system prune

Thomas Calmant - An Introduction to Docker September 2018 – 22

A journey through Docker Commands (6/6)
Step 18
(Host)

Stop the container (from the host):
docker stop $CID

Step 19
(Host)

See reclaimable space:
docker system df

Step 20
(Host)

Clean up:
docker container prune

docker volume prune

docker image prune

All in one:
docker system prune

Thomas Calmant - An Introduction to Docker September 2018 – 22

A journey through Docker Commands (6/6)
Step 18
(Host)

Stop the container (from the host):
docker stop $CID

Step 19
(Host)

See reclaimable space:
docker system df

Step 20
(Host)

Clean up:
docker container prune

docker volume prune

docker image prune

All in one:
docker system prune

Thomas Calmant - An Introduction to Docker September 2018 – 22

A journey through Docker Commands (6/6)
Step 18
(Host)

Stop the container (from the host):
docker stop $CID

Step 19
(Host)

See reclaimable space:
docker system df

Step 20
(Host)

Clean up:
docker container prune

docker volume prune

docker image prune

All in one:
docker system prune

Thomas Calmant - An Introduction to Docker September 2018 – 22

Last but not least

Step 21
(Host)

Run a container and wait for it to finish:

CID1=$(docker run -d debian sleep 60)

CID2=$(docker run -d debian sleep 10)

docker wait $CID1 $CID2

Thomas Calmant - An Introduction to Docker September 2018 – 23

Before we go...

Let Docker download images in background
(this can last some minutes)

docker pull python:3.7

docker pull registry:2

docker pull nginx

docker pull hyper/docker-registry-web

Thomas Calmant - An Introduction to Docker September 2018 – 24

Thomas Calmant - Contenerization with Docker or Singularity : an introduction September 2018 – 25

3
Basic interaction with
the host
Network & Files

Docker default network configuration – none

none No network stack but loopback

eth0

eth1

loopback

Docker Daemon

Container xxx

loopback

Thomas Calmant - An Introduction to Docker September 2018 – 26

Docker default network configuration – host

host Host’s network interfaces

eth0

eth1

loopback

Docker Daemon

Container xxx

loopbacketh0

eth1

Thomas Calmant - An Introduction to Docker September 2018 – 27

Docker default network configuration – bridge

bridge Virtual switch handled by Docker (default behavior)

eth0

eth1

loopback

Docker Daemon

Container xxx

loopbacketh0

bridge

Thomas Calmant - An Introduction to Docker September 2018 – 28

Docker networks – all configurations

I Kinds of networks:
none No network stack but loopback
host Host’s network interfaces

bridge Virtual switch handled by Docker (default)
overlay A bridge network across hosts (Swarm only)

I Custom networks:
I docker network create -d bridge my-net

--subnet 10.0.5.0/24
I Only of type bridge, overlay or from a plugged-in type

I Multiple networks can be attached to a container

Thomas Calmant - An Introduction to Docker September 2018 – 29

Docker networks – command setup

I Run a debian image with a specific network:
I docker run --rm -it debian ip addr

I Loopback and private IP
I Access to external network (through the bridge to host’s networks)

I docker run --rm -it --network host debian ip addr

I Loopback and host’s IPs
I Direct access to host’s network interfaces

I docker run --rm -it --network none debian ip addr

I Loopback only
I No access to the outside world nor to the host

Thomas Calmant - An Introduction to Docker September 2018 – 30

Docker networks – command setup

I Run a debian image with a specific network:
I docker run --rm -it --network bridge debian ip addr

I Loopback and private IP
I Access to external network (through the bridge to host’s networks)

I docker run --rm -it --network host debian ip addr

I Loopback and host’s IPs
I Direct access to host’s network interfaces

I docker run --rm -it --network none debian ip addr

I Loopback only
I No access to the outside world nor to the host

Thomas Calmant - An Introduction to Docker September 2018 – 30

Docker networks – command setup

I Run a debian image with a specific network:
I docker run --rm -it --network bridge debian ip addr

I Loopback and private IP
I Access to external network (through the bridge to host’s networks)

I docker run --rm -it --network host debian ip addr

I Loopback and host’s IPs
I Direct access to host’s network interfaces

I docker run --rm -it --network none debian ip addr

I Loopback only
I No access to the outside world nor to the host

Thomas Calmant - An Introduction to Docker September 2018 – 30

Docker networks – command setup

I Run a debian image with a specific network:
I docker run --rm -it --network bridge debian ip addr

I Loopback and private IP
I Access to external network (through the bridge to host’s networks)

I docker run --rm -it --network host debian ip addr

I Loopback and host’s IPs
I Direct access to host’s network interfaces

I docker run --rm -it --network none debian ip addr

I Loopback only
I No access to the outside world nor to the host

Thomas Calmant - An Introduction to Docker September 2018 – 30

Docker networks – command setup

I Run a debian image with a specific network:
I docker run --rm -it --network bridge debian ip addr

I Loopback and private IP
I Access to external network (through the bridge to host’s networks)

I docker run --rm -it --network host debian ip addr
I Loopback and host’s IPs
I Direct access to host’s network interfaces

I docker run --rm -it --network none debian ip addr

I Loopback only
I No access to the outside world nor to the host

Thomas Calmant - An Introduction to Docker September 2018 – 30

Docker networks – command setup

I Run a debian image with a specific network:
I docker run --rm -it --network bridge debian ip addr

I Loopback and private IP
I Access to external network (through the bridge to host’s networks)

I docker run --rm -it --network host debian ip addr
I Loopback and host’s IPs
I Direct access to host’s network interfaces

I docker run --rm -it --network none debian ip addr
I Loopback only
I No access to the outside world nor to the host

Thomas Calmant - An Introduction to Docker September 2018 – 30

Publish a port: command line

I -p, --publish: gives access to a container port from the
outside
-p CC Host random port ⇒ Container port CC
-p HH:CC Host port HH ⇒ Container port CC
-p IP:HH:CC Same, but bound to host address IP

Thomas Calmant - An Introduction to Docker September 2018 – 31

Publish a port: example

I Run an nginx image:
docker run --rm -it -p 8080:80 nginx

I Server available on http://localhost:8080/
I Also from the host interfaces, if the firewall allows it

Thomas Calmant - An Introduction to Docker September 2018 – 32

http://localhost:8080/

Publish a port: example

I Run an nginx image:
docker run --rm -it -p 8080:80 nginx

I Server available on http://localhost:8080/
I Also from the host interfaces, if the firewall allows it

Thomas Calmant - An Introduction to Docker September 2018 – 32

http://localhost:8080/

Publish a port: example

I Run an nginx image:
docker run --rm -it -p 8080:80 nginx

I Server available on http://localhost:8080/
I Also from the host interfaces, if the firewall allows it

Welcome to nginx!
If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.

For online documentation and support please refer to nginx.org.
Commercial support is available at nginx.com.

Thank you for using nginx.

http://localhost:8080/

Figure: nginx is up & running

Thomas Calmant - An Introduction to Docker September 2018 – 32

http://localhost:8080/

Docker volumes: command line

I -v, --volume: defines a new volume

I docker run -v /host/path:/path ...
I Mounts a bound volume to /path
I Also support a final :ro flag, to bind a read-only volume:

docker run -v /host/path:/path:ro ...

I docker run -v /path ...
I Creates a data volume for the /path folder
I Volume will be kept even if the container is deleted
I It will be visible in docker volume ls
I It can be mounted as a named volume on another container

Thomas Calmant - An Introduction to Docker September 2018 – 33

Docker volumes: command line

I -v, --volume: defines a new volume

I docker run -v /host/path:/path ...
I Mounts a bound volume to /path
I Also support a final :ro flag, to bind a read-only volume:

docker run -v /host/path:/path:ro ...

I docker run -v /path ...
I Creates a data volume for the /path folder
I Volume will be kept even if the container is deleted
I It will be visible in docker volume ls
I It can be mounted as a named volume on another container

Thomas Calmant - An Introduction to Docker September 2018 – 33

Docker volumes: command line

I -v, --volume: defines a new volume

I docker run -v /host/path:/path ...
I Mounts a bound volume to /path
I Also support a final :ro flag, to bind a read-only volume:

docker run -v /host/path:/path:ro ...

I docker run -v /path ...
I Creates a data volume for the /path folder
I Volume will be kept even if the container is deleted
I It will be visible in docker volume ls
I It can be mounted as a named volume on another container

Thomas Calmant - An Introduction to Docker September 2018 – 33

Docker volumes: example

On the host, in a new folder:

I Create a simple HTML page: ./www/index.html

<html>

<body><h1>Hello World, from Docker</h1></body>

</html>

I Create an nginx configuration: ./site.conf

server {

listen 80;

root /www;

autoindex on;

}

I Source files available on:
http://sed.inrialpes.fr/docker-tuto/index_dockersingularity.html

Thomas Calmant - An Introduction to Docker September 2018 – 34

http://sed.inrialpes.fr/docker-tuto/index_dockersingularity.html

Docker volumes: example

I Run the container with the following volumes:
I ./site.conf ⇒ /etc/nginx/conf.d/default.conf
I ./www/ ⇒ /www

docker run --rm \
-p 8080:80 \
-v $(pwd)/site.conf:/etc/nginx/conf.d/default.conf \
-v $(pwd)/www:/www \
nginx

Thomas Calmant - An Introduction to Docker September 2018 – 35

Docker volumes: example

I Run the container with the following volumes:
I ./site.conf ⇒ /etc/nginx/conf.d/default.conf
I ./www/ ⇒ /www

docker run --rm \
-p 8080:80 \
-v $(pwd)/site.conf:/etc/nginx/conf.d/default.conf \
-v $(pwd)/www:/www \
nginx

Thomas Calmant - An Introduction to Docker September 2018 – 35

Docker volumes: plug-ins

I Docker can be extended with Volume Drivers
I Example: the NetShare.io plug-in

I Plug-in to be installed separately;
see http://netshare.containx.io/

I Gives access to NFS & CIFS shared folders as volumes

I docker volume create -d nfs --name shared-data \
-o share=nfs-server:/shared/path

I Creates a named volume with the NetShare driver
I NetShare accepts fstab options as configuration

I docker run -v shared-data:/path ...

Thomas Calmant - An Introduction to Docker September 2018 – 36

http://netshare.containx.io/

Thomas Calmant - Contenerization with Docker or Singularity : an introduction September 2018 – 37

4
Create a Docker image
Bring your own container

Principles
Dockerfile File describing how the image is built
docker build Command line to build the Dockerfile

Local cache Local image store
docker push Command line to send the image to a registry
Docker registry Image store (public or private)

Dockerfile

Local cache
Docker registry

docker build docker push

Thomas Calmant - An Introduction to Docker September 2018 – 38

Dockerfile: Jupyter notebook service

I Objective:
I Provide a Jupyter notebook within a simple user workspace

I Required environment:
I Python 3.7 (because we want to try its latest features)
I Jupyter, to work with notebooks
I A non-root user (karadoc)

I Dockerfile is available at:
http://sed.inrialpes.fr/docker-tuto/index_dockersingularity.html

Thomas Calmant - An Introduction to Docker September 2018 – 39

http://sed.inrialpes.fr/docker-tuto/index_dockersingularity.html

Dockerfile: Jupyter notebook service

I Objective:
I Provide a Jupyter notebook within a simple user workspace

I Required environment:
I Python 3.7 (because we want to try its latest features)
I Jupyter, to work with notebooks
I A non-root user (karadoc)

I Dockerfile is available at:
http://sed.inrialpes.fr/docker-tuto/index_dockersingularity.html

Thomas Calmant - An Introduction to Docker September 2018 – 39

http://sed.inrialpes.fr/docker-tuto/index_dockersingularity.html

Dockerfile: Jupyter notebook service
FROM python:3.7

Parent image
Name: Python (official)

Tag: 3.7

Thomas Calmant - An Introduction to Docker September 2018 – 40

Dockerfile: Jupyter notebook service
FROM python:3.7
LABEL maintainer="SED RA <sed-gra@inria.fr>" Meta information

I Maintainer, version, . . .
I Visible in docker inspect

Thomas Calmant - An Introduction to Docker September 2018 – 40

Dockerfile: Jupyter notebook service
FROM python:3.7
LABEL maintainer="SED RA <sed-gra@inria.fr>"

Ensure a sane environment

ENV LANG=C.UTF-8 LC_ALL=C.UTF-8

Environment variables
I Set for the whole container
I Can’t reference current line

Thomas Calmant - An Introduction to Docker September 2018 – 40

Dockerfile: Jupyter notebook service
FROM python:3.7
LABEL maintainer="SED RA <sed-gra@inria.fr>"

Ensure a sane environment

ENV LANG=C.UTF-8 LC_ALL=C.UTF-8

Update the image & install some tools

RUN apt update && apt -y dist-upgrade && \

pip --no-cache-dir install jupyter

Dependencies setup
I Update the system first
I Install only what’s necessary
I Regroup install commands
I Clean up caches immediately

Thomas Calmant - An Introduction to Docker September 2018 – 40

Dockerfile: Jupyter notebook service
FROM python:3.7
LABEL maintainer="SED RA <sed-gra@inria.fr>"

Ensure a sane environment

ENV LANG=C.UTF-8 LC_ALL=C.UTF-8

Update the image & install some tools

RUN apt update && apt -y dist-upgrade && \

pip --no-cache-dir install jupyter

Set arguments

ARG user=karadoc

ARG home=/kaamelott/kitchen

Create the user and its directory

RUN mkdir -p $home && \

useradd $user --home-dir $home && \

chown -R $user: $home

Create the user and its directory

Thomas Calmant - An Introduction to Docker September 2018 – 40

Dockerfile: Jupyter notebook service
FROM python:3.7
LABEL maintainer="SED RA <sed-gra@inria.fr>"

Ensure a sane environment

ENV LANG=C.UTF-8 LC_ALL=C.UTF-8

Update the image & install some tools

RUN apt update && apt -y dist-upgrade && \

pip --no-cache-dir install jupyter

Set arguments

ARG user=karadoc

ARG home=/kaamelott/kitchen

Create the user and its directory

RUN mkdir -p $home && \

useradd $user --home-dir $home && \

chown -R $user: $home

Switch to the new user

USER $user

Change working directory

RUN mkdir $home/notebooks

WORKDIR $home/notebooks

Switch to the new user
I Only a new USER command can

switch back to root

Thomas Calmant - An Introduction to Docker September 2018 – 40

Dockerfile: Jupyter notebook service
FROM python:3.7
LABEL maintainer="SED RA <sed-gra@inria.fr>"

Ensure a sane environment

ENV LANG=C.UTF-8 LC_ALL=C.UTF-8

Update the image & install some tools

RUN apt update && apt -y dist-upgrade && \

pip --no-cache-dir install jupyter

Set arguments

ARG user=karadoc

ARG home=/kaamelott/kitchen

Create the user and its directory

RUN mkdir -p $home && \

useradd $user --home-dir $home && \

chown -R $user: $home

Switch to the new user

USER $user

Change working directory

RUN mkdir $home/notebooks

WORKDIR $home/notebooks

Set the default entry point & arguments

ENTRYPOINT ["jupyter", "notebook", "--no-browser"]

CMD ["--port=8888", "--ip=’*’", "--NotebookApp.token=’’"]

Run commands as user
I Set default program and

arguments

Thomas Calmant - An Introduction to Docker September 2018 – 40

Dockerfile: Build an image

Step 1 Download the Dockerfile:
http://sed.inrialpes.fr/docker-tuto/docker/Dockerfile

Step 2 Build the image:
docker build -t aubergiste .

I tag (name) of the image
I context: folder where to find files referenced in Dockerfile

Thomas Calmant - An Introduction to Docker September 2018 – 41

http://sed.inrialpes.fr/docker-tuto/index_dockersingularity.html

Dockerfile: Build an image

Step 1 Download the Dockerfile:
http://sed.inrialpes.fr/docker-tuto/docker/Dockerfile

Step 2 Build the image:
docker build -t aubergiste .

I tag (name) of the image
I context: folder where to find files referenced in Dockerfile

Thomas Calmant - An Introduction to Docker September 2018 – 41

http://sed.inrialpes.fr/docker-tuto/index_dockersingularity.html

Dockerfile: Build an image

Step 1 Download the Dockerfile:
http://sed.inrialpes.fr/docker-tuto/docker/Dockerfile

Step 2 Build the image:
docker build -t aubergiste .

I tag (name) of the image

I context: folder where to find files referenced in Dockerfile

Thomas Calmant - An Introduction to Docker September 2018 – 41

http://sed.inrialpes.fr/docker-tuto/index_dockersingularity.html

Dockerfile: Build an image

Step 1 Download the Dockerfile:
http://sed.inrialpes.fr/docker-tuto/docker/Dockerfile

Step 2 Build the image:
docker build -t aubergiste .

I tag (name) of the image
I context: folder where to find files referenced in Dockerfile

Thomas Calmant - An Introduction to Docker September 2018 – 41

http://sed.inrialpes.fr/docker-tuto/index_dockersingularity.html

Dockerfile: Build an image

Step 3 Run it :
docker run --rm -it -p 8888:8888 aubergiste

Launch a browser on host : http://localhost:8888

Step 4 Give it a parameter:
docker run --rm -it aubergiste --help

Step 5 Run a shell instead of a notebook:
docker run --rm -it --entrypoint /bin/bash aubergiste

Thomas Calmant - An Introduction to Docker September 2018 – 42

Dockerfile: Build an image

Step 3 Run it :
docker run --rm -it -p 8888:8888 aubergiste

Launch a browser on host : http://localhost:8888

Step 4 Give it a parameter:
docker run --rm -it aubergiste --help

Step 5 Run a shell instead of a notebook:
docker run --rm -it --entrypoint /bin/bash aubergiste

Thomas Calmant - An Introduction to Docker September 2018 – 42

Dockerfile: Build an image

Step 3 Run it :
docker run --rm -it -p 8888:8888 aubergiste

Launch a browser on host : http://localhost:8888

Step 4 Give it a parameter:
docker run --rm -it aubergiste --help

Step 5 Run a shell instead of a notebook:
docker run --rm -it --entrypoint /bin/bash aubergiste

Thomas Calmant - An Introduction to Docker September 2018 – 42

Dockerfile: Basic instructions

Description
FROM Parent image
LABEL Metadata to describe the image

ARG Variable to be given at build time

Instructions
ENV Sets environment variables
RUN Executes shell commands

SHELL Sets the shell executing RUN commands
WORKDIR Sets the working directory

Behavior
ENTRYPOINT Sets the command line to execute ($SHELL by default)

CMD Sets the default arguments for the entry point

Thomas Calmant - An Introduction to Docker September 2018 – 43

Dockerfile: More instructions

Files
COPY Copies/Downloads a file to the image (recommended)
ADD Copies/Downloads and auto-decompresses a file

VOLUME Declares a folder as a data volume

Network
EXPOSE Declares ports to expose to other containers

User management
USER Switches to the given user.

The user must have been creat with useradd

Thomas Calmant - An Introduction to Docker September 2018 – 44

Docker images in a nutshell

I Stored as layers of modifications
I Layers are shared between images

I Named in the <name>:<tag> format
I Default tag : latest
I The name can be prefixed by the address of a custom registry

I Stored in a Docker Registry
I Either the official Docker Hub (hub.docker.com)
I or a private instance of the registry image
I or a compatible registry (Nexus plugin, . . .)

Thomas Calmant - An Introduction to Docker September 2018 – 45

https://hub.docker.com/

Docker images in a nutshell

I Stored as layers of modifications
I Layers are shared between images

I Named in the <name>:<tag> format
I Default tag : latest
I The name can be prefixed by the address of a custom registry

I Stored in a Docker Registry
I Either the official Docker Hub (hub.docker.com)
I or a private instance of the registry image
I or a compatible registry (Nexus plugin, . . .)

Thomas Calmant - An Introduction to Docker September 2018 – 45

https://hub.docker.com/

Docker images in a nutshell

I Stored as layers of modifications
I Layers are shared between images

I Named in the <name>:<tag> format
I Default tag : latest
I The name can be prefixed by the address of a custom registry

I Stored in a Docker Registry
I Either the official Docker Hub (hub.docker.com)
I or a private instance of the registry image
I or a compatible registry (Nexus plugin, . . .)

Thomas Calmant - An Introduction to Docker September 2018 – 45

https://hub.docker.com/

Docker images in a nutshell

I Local cache: /var/lib/docker/<driver>

I Available drivers:
Overlay2 Replaces AUFS on Debian

AUFS Historic, fallback on Debian flavor
Device Mapper Historic, default on Red Hat flavor

BTRFS Default on Suse, could replace Device Mapper
ZFS “Not recommended [...] unless you have substantial

experience with ZFS on Linux”
I Configuration:

I storage-driver in /etc/docker/daemon.json

Thomas Calmant - An Introduction to Docker September 2018 – 46

Docker Registry: where images are found
I Official registry:

I hub.docker.com
I User authentication: docker login, docker logout

I Private registries, running the official registry image
I All registries must provide a signed certificate

myhost

docker login

Dockerfile

hub.docker.com

docker push hub.docker.com/name:tag

docker logout

docker build -t name:tag .

docker push myhost/name:tag

Thomas Calmant - An Introduction to Docker September 2018 – 47

https://hub.docker.com/

Setup a Docker registry

Step 1 Download the composition setup at:
http://sed.inrialpes.fr/docker-tuto/index_dockersingularity.html

Step 2 Decompress the file and run the composition from the
extracted folder:
docker-compose up -d

(download can take a while)
Step 3 Wait for the server to come up: https://localhost

Thomas Calmant - An Introduction to Docker September 2018 – 48

http://sed.inrialpes.fr/docker-tuto/index_dockersingularity.html
https://localhost

Docker image: commands

Step 4 Build an image (back to the folder with the Dockerfile):
docker build -t aubergiste:1.0 .

Step 5 Tag it as latest:
docker tag aubergiste:1.0 aubergiste

Step 6 See the content of the local cache:
docker images

Thomas Calmant - An Introduction to Docker September 2018 – 49

Docker image: commands

Step 4 Build an image (back to the folder with the Dockerfile):
docker build -t aubergiste:1.0 .

Step 5 Tag it as latest:
docker tag aubergiste:1.0 aubergiste

Step 6 See the content of the local cache:
docker images

Thomas Calmant - An Introduction to Docker September 2018 – 49

Docker image: commands

Step 4 Build an image (back to the folder with the Dockerfile):
docker build -t aubergiste:1.0 .

Step 5 Tag it as latest:
docker tag aubergiste:1.0 aubergiste

Step 6 See the content of the local cache:
docker images

Thomas Calmant - An Introduction to Docker September 2018 – 49

Docker image: commands

Step 7 Tag the image for a private registry:
docker tag aubergiste localhost/aubergiste

Step 8 Upload it:
docker push localhost/aubergiste

Step 9 Remove the local reference:
docker rmi aubergiste

Step 10 Stop the registry composition (from the composition folder):
docker-compose down

Thomas Calmant - An Introduction to Docker September 2018 – 50

Docker image: commands

Step 7 Tag the image for a private registry:
docker tag aubergiste localhost/aubergiste

Step 8 Upload it:
docker push localhost/aubergiste

Step 9 Remove the local reference:
docker rmi aubergiste

Step 10 Stop the registry composition (from the composition folder):
docker-compose down

Thomas Calmant - An Introduction to Docker September 2018 – 50

Docker image: commands

Step 7 Tag the image for a private registry:
docker tag aubergiste localhost/aubergiste

Step 8 Upload it:
docker push localhost/aubergiste

Step 9 Remove the local reference:
docker rmi aubergiste

Step 10 Stop the registry composition (from the composition folder):
docker-compose down

Thomas Calmant - An Introduction to Docker September 2018 – 50

What about docker commit?

I Principle: save the current state of a container as a image
I Some use cases:

I when an application setup is interactive
I when the setup comes from a volume
I when the setup is large (10GB+)

I Usage:
docker commit ${CID} <image>:<tag>

Thomas Calmant - An Introduction to Docker September 2018 – 51

Thomas Calmant - Contenerization with Docker or Singularity : an introduction September 2018 – 52

5
Link containers together
Unity makes strength

Expose, Links & Networks

I Expose (Dockerfile or run argument)
I Defines ports accessible by other containers, even without ICC

I Links (run argument, composition)
I Indicates Docker that a container can communicate with

another
I Allows to give a network alias to access the container

I Networks
I All containers of a network can communicate
I No port restriction inside the network

Thomas Calmant - An Introduction to Docker September 2018 – 53

Compositions: Docker Compose

I A Python script to manage sets of containers
I The standalone version is recommended, see

https://docs.docker.com/compose/install
I pip install docker-compose on recent OSes

I Same capabilities as the run command
I Compositions written in YAML format

Thomas Calmant - An Introduction to Docker September 2018 – 54

https://docs.docker.com/compose/install

Principles
docker-compose.yml

Docker Daemon

version: "3"

services:

nginx:

image: nginx

ports:

- 443:443

links:

- registry:registry-srv

volumes:

- ./nginx/:/etc/nginx/conf.d

registry:

image: registry:2

environment:

REGISTRY_STORAGE: /data

volumes:

- ./data:/data

I docker-compose up -d

I docker-compose stop

I docker-compose down

Thomas Calmant - An Introduction to Docker September 2018 – 55

Principles
docker-compose.yml

docker-compose up

Docker Daemon

version: "3"

services:

nginx:

image: nginx

ports:

- 443:443

links:

- registry:registry-srv

volumes:

- ./nginx/:/etc/nginx/conf.d

registry:

image: registry:2

environment:

REGISTRY_STORAGE: /data

volumes:

- ./data:/dataI docker-compose up -d

I docker-compose stop

I docker-compose down

Thomas Calmant - An Introduction to Docker September 2018 – 55

Principles
docker-compose.yml

Docker Daemon

nginx

registry

version: "3"

services:

nginx:

image: nginx

ports:

- 443:443

links:

- registry:registry-srv

volumes:

- ./nginx/:/etc/nginx/conf.d

registry:

image: registry:2

environment:

REGISTRY_STORAGE: /data

volumes:

- ./data:/dataI docker-compose up -d

I docker-compose stop

I docker-compose down

Thomas Calmant - An Introduction to Docker September 2018 – 55

Principles
docker-compose.yml

Docker Daemon

nginx

registry

version: "3"

services:

nginx:

image: nginx

ports:

- 443:443

links:

- registry:registry-srv

volumes:

- ./nginx/:/etc/nginx/conf.d

registry:

image: registry:2

environment:

REGISTRY_STORAGE: /data

volumes:

- ./data:/dataI docker-compose up -d

I docker-compose stop

I docker-compose down

Thomas Calmant - An Introduction to Docker September 2018 – 55

Principles
docker-compose.yml

Docker Daemon

version: "3"

services:

nginx:

image: nginx

ports:

- 443:443

links:

- registry:registry-srv

volumes:

- ./nginx/:/etc/nginx/conf.d

registry:

image: registry:2

environment:

REGISTRY_STORAGE: /data

volumes:

- ./data:/dataI docker-compose up -d

I docker-compose stop

I docker-compose down

Thomas Calmant - An Introduction to Docker September 2018 – 55

docker-compose.yml
version: "3"

services:

nginx:

image: "nginx"

ports:

- "443:443"

links:

- registry:registry-srv

volumes:

- ./nginx/:/etc/nginx/conf.d

registry:

image: "registry:2"

environment:

REGISTRY_STORAGE_FILESYSTEM_ROOTDIRECTORY: /data

volumes:

- ./data:/data

Thomas Calmant - An Introduction to Docker September 2018 – 56

Thomas Calmant - Contenerization with Docker or Singularity : an introduction September 2018 – 57

6
Security
(kind of)

What Docker is about

I Docker isolates processes from the host

I Untrusted applications should be executed with high isolation
I Avoid loosing the leash:

I Avoid --privileged
I Don’t add capabilities to the container
I Don’t disable namespaces

I Docker doesn’t isolate the user from the host
I A user in the docker is root on the machine
I Not suitable for children (and untrusted users)

I “With Great Power Comes Great Responsibility”

docker run --rm -it -v /:/mnt/host debian

Thomas Calmant - An Introduction to Docker September 2018 – 58

What Docker is about

I Docker isolates processes from the host
I Untrusted applications should be executed with high isolation

I Avoid loosing the leash:
I Avoid --privileged
I Don’t add capabilities to the container
I Don’t disable namespaces

I Docker doesn’t isolate the user from the host
I A user in the docker is root on the machine
I Not suitable for children (and untrusted users)

I “With Great Power Comes Great Responsibility”

docker run --rm -it -v /:/mnt/host debian

Thomas Calmant - An Introduction to Docker September 2018 – 58

What Docker is about

I Docker isolates processes from the host
I Untrusted applications should be executed with high isolation
I Avoid loosing the leash:

I Avoid --privileged
I Don’t add capabilities to the container
I Don’t disable namespaces

I Docker doesn’t isolate the user from the host
I A user in the docker is root on the machine
I Not suitable for children (and untrusted users)

I “With Great Power Comes Great Responsibility”

docker run --rm -it -v /:/mnt/host debian

Thomas Calmant - An Introduction to Docker September 2018 – 58

What Docker is about

I Docker isolates processes from the host
I Untrusted applications should be executed with high isolation
I Avoid loosing the leash:

I Avoid --privileged
I Don’t add capabilities to the container
I Don’t disable namespaces

I Docker doesn’t isolate the user from the host
I A user in the docker is root on the machine
I Not suitable for children (and untrusted users)

I “With Great Power Comes Great Responsibility”

docker run --rm -it -v /:/mnt/host debian

Thomas Calmant - An Introduction to Docker September 2018 – 58

What Docker is about

I Docker isolates processes from the host
I Untrusted applications should be executed with high isolation
I Avoid loosing the leash:

I Avoid --privileged
I Don’t add capabilities to the container
I Don’t disable namespaces

I Docker doesn’t isolate the user from the host
I A user in the docker is root on the machine
I Not suitable for children (and untrusted users)

I “With Great Power Comes Great Responsibility”

docker run --rm -it -v /:/mnt/host debian

Thomas Calmant - An Introduction to Docker September 2018 – 58

User namespace remap

I All actions from the container are seen as subuser’s ones
I Privileged mode is disabled
I Configure the daemon: /etc/docker/daemon.conf

I Activate User Namespace Remap: userns-remap: default

I Or, with a given sub user:
I The user must exist in /etc/passwd
I Configure the daemon: userns-remap: bohort
I Set the /etc/subuid: bohort:100000:65536
I Set the /etc/subgid: bohort:100000:65536
I Be careful not to overstep a real UID or GID

Thomas Calmant - An Introduction to Docker September 2018 – 59

Thomas Calmant - An Introduction to Docker September 2018 – 60

Thomas Calmant - Contenerization with Docker or Singularity : an introduction September 2018 – 61

7
A short introduction to
singularity

Before it becomes a standard

What is it?

I HPC-oriented “isolation”
I Based on a single image file to ease transfers
I Code is executed with user’s rights
I Shares by default, constrains by arguments
I Aims to replace Virtual Machines, not Docker

I Note that Docker and Singularity philosophies are opposite

Thomas Calmant - An Introduction to Docker September 2018 – 62

Shares by default, you said?

I By default, singularity will share a lot from the host:
I Current environment variables
I Your home directory
I Some system directories (/dev, /proc, /tmp, . . .)

I This can lead to some tricky situations
I Process crashing due to an invalid host-inherited environment

variable
I Installation right into your host home directory

e.g. pip install --user -U setuptools

I Constraint arguments:
-e/--cleanenv Clean up environment variables
-c/--contain Use virtual folders (except part of /dev)

Environment is not cleaned.
-C/--containall Both -e and -c, plus namespaces isolation

Thomas Calmant - An Introduction to Docker September 2018 – 63

Host sharing/isolation arguments

I Networking:
Argument Behaviour Docker equivalent
default Use host network --net=host

-n No network (loopback only) --net=none

I Mount points:
I -B /opt: mount host /opt as /opt in container
I -B /opt:/inner: mount host /opt as /inner in container
I Multiple shares at once: -B /etc/my-app,/opt:/inner

Thomas Calmant - An Introduction to Docker September 2018 – 64

Mount points – Home directory

The Home directory is treated with a specific argument:
I -H $HOME/lower

I Mounts $HOME/lower as home folder
I Path will be the same inside the container
I Parent hierarchy won’t be mounted.

I -H $HOME/lower:/home/toto
I Mounts $HOME/lower as home folder
I Makes it appear as /home/toto in the container

Thomas Calmant - An Introduction to Docker September 2018 – 65

Container recipe

Single file (no default name) separated into multiple sections:

Header
Bootstrap: Kind of source image

(docker, shub, debootstrap, busybox, . . .)
From: Name of the source image

(content depends on Bootstrap)

Metadata
%help A help message on how to use the image

%labels Labels to describe/tag the image

Thomas Calmant - An Introduction to Docker September 2018 – 66

Container recipe

Content Setup (executed with root rights)
%setup Script executed on the host
%files List of host files to copy inside the image

Container setup
%environment Environment variables in the container

%post Commands executed to construct the image
(inside a temporary container)

%runscript Commands executed on singularity run

%test Commands executed at the end of build to
check the image

Thomas Calmant - An Introduction to Docker September 2018 – 67

Container recipe – Notebook sample
Bootstrap: docker

From: python:3.7 Parent image
I From a Docker image
I python:3.7 (Docker official image)

Thomas Calmant - An Introduction to Docker September 2018 – 68

Container recipe – Notebook sample
Bootstrap: docker

From: python:3.7

%labels

AUTHOR sed-gra@inria.fr

Meta information
I Maintainer, version, . . .
I Visible in singularity inspect

Thomas Calmant - An Introduction to Docker September 2018 – 68

Container recipe – Notebook sample
Bootstrap: docker

From: python:3.7

%labels

AUTHOR sed-gra@inria.fr

%files

run_jupyter.sh /opt/run_jupyter.sh

Files to copy in the image
I Copies are done before running

commands
I Files can be generated on host in

the %setup section

Thomas Calmant - An Introduction to Docker September 2018 – 68

Container recipe – Notebook sample
Bootstrap: docker

From: python:3.7

%labels

AUTHOR sed-gra@inria.fr

%files

run_jupyter.sh /opt/run_jupyter.sh

%environment

export LANG=C.UTF-8

export LC_ALL=C.UTF-8

Environment variables
I In fact, a shell file sourced at

start-up
I Don’t forget to EXPORT them

Thomas Calmant - An Introduction to Docker September 2018 – 68

Container recipe – Notebook sample
Bootstrap: docker

From: python:3.7

%labels

AUTHOR sed-gra@inria.fr

%files

run_jupyter.sh /opt/run_jupyter.sh

%environment

export LANG=C.UTF-8

export LC_ALL=C.UTF-8

%post

apt update && apt -y dist-upgrade

pip install jupyter

Commands executed in the image
I A shell file executed in a

temporary folder

Thomas Calmant - An Introduction to Docker September 2018 – 68

Container recipe – Notebook sample
Bootstrap: docker

From: python:3.7

%labels

AUTHOR sed-gra@inria.fr

%files

run_jupyter.sh /opt/run_jupyter.sh

%environment

export LANG=C.UTF-8

export LC_ALL=C.UTF-8

%post

apt update && apt -y dist-upgrade

pip install jupyter

chmod ugo+x /opt/run_jupyter.sh

%runscript

mkdir -p $HOME/notebooks

/opt/run_jupyter.sh --notebook-dir=$HOME/notebooks --ip="*" --port 8888

Script to be sourced on
I singularity run

Thomas Calmant - An Introduction to Docker September 2018 – 68

Container recipe – Apps

I Apps are a way to use the same image for multiple pre-defined
usages

I Listed with singularity apps

I Defined alongside base image sections
I Ran with singularity run --app <app>

I singularity run jupyter.img
I singularity run --app console jupyter.img
I singularity run --app qtconsole jupyter.img

Thomas Calmant - An Introduction to Docker September 2018 – 69

Container recipe – Apps

Application sections
%apphelp Description of the application

%applabels Metadata of the application
%appenv Environment variables for the application

%appfiles Host files to copy inside image
%appinstall Commands executed inside the image

%apprun Commands executed on run --app <app>

I No %appsetup section
I Use relative path when copying files for an app
I Access it using the $SCIF APPROOT environment variable

Thomas Calmant - An Introduction to Docker September 2018 – 70

Container recipe – App Example

%appfiles console

sample.conf

%appinstall console

pip install readline

%apprun console

echo "Starting in console mode..."

cat $SCIF_APPROOT/sample.conf

jupyter console

Thomas Calmant - An Introduction to Docker September 2018 – 71

Singularity Basic commands

Files available at
http://sed.inrialpes.fr/docker-tuto/index_dockersingularity.html

Build the image file

sudo singularity build jupyter.img Jupyter.singularity

Basic

singularity run jupyter.img

Highly recommended

singularity run -e jupyter.img

Run a shell in the image

singularity shell -e jupyter.img

Run an app

singularity run -e --app console jupyter.img

Thomas Calmant - An Introduction to Docker September 2018 – 72

http://sed.inrialpes.fr/docker-tuto/index_dockersingularity.html

Singularity Container images

I Singularity uses a single file as a container image
I Supported image formats:

I SquashFS: the current default format
I Read-only

I ext3: the previous default format
I Possible read-write mode

I sandbox: based on a local directory instead of a single file
I Writeable
I Can be seen as a chroot directory

I .tar, .tar.gz, .tar.bz2: a compressed sandbox
I Read-only

Thomas Calmant - An Introduction to Docker September 2018 – 73

Thomas Calmant - Contenerization with Docker or Singularity : an introduction September 2018 – 74

8
Singularity — Docker
The Persuaders

Most visible differences

Singularity Docker
No daemon (uses SUID) Unique daemon per host
Share by default Constrain by default
Processes run with user’s rights Processes run with inner rights
Sees host with user’s rights Sees host with root rights
Single file images Multi-layer images
Targets shared computer Targets service-hosting servers

Thomas Calmant - An Introduction to Docker September 2018 – 75

Work with NVidia GPUs

I Requires the NVIDIA drivers to be installed on the host

I On Docker:
I Official Open Source plugin from NVIDIA:

github.com/NVIDIA/nvidia-docker
I Install the nvidia-docker2 package
I Run containers with the --runtime=nvidia argument

I On Singularity:
I Support is included in Singularity (beta)
I Add the --nv flag when starting the container

Thomas Calmant - An Introduction to Docker September 2018 – 76

https://github.com/NVIDIA/nvidia-docker

Emulate Singularity with Docker

The following command is equivalent to:
singularity shell docker://debian

docker run \

-it --rm \

--pid=host --ipc=host \

--net=host --uts=host \

-v /tmp:/tmp \

-v /etc/passwd:/etc/passwd:ro \

-v "$HOME":"$HOME" -w "$HOME" \

--user="$(id -u):$(id -g)" \

--env-file=<(bash -c set) \

--entrypoint "/bin/bash" \

debian

Thomas Calmant - An Introduction to Docker September 2018 – 77

Run Singularity inside Docker

I Because... why not?
I Dockerfile:

I Debian + Backport repository + singularity-container
I Executed with a new user
I User can do sudo singularity without password

I Execution:

docker run -it --rm \

--privileged \

-v $(pwd):/src \

singularity \

sudo singularity build /src/out.img /src/Singularity

Thomas Calmant - An Introduction to Docker September 2018 – 78

Thomas Calmant - Contenerization with Docker or Singularity : an introduction September 2018 – 79

9
Miscellaneous

Singularity Image Registry

I Open Source registry available on GitHub
https://github.com/singularityhub/sregistry

I Available as a Docker composition:
1. git clone

https://github.com/singularityhub/sregistry.git

2. cp shub/settings/dummy secrets.py

shub/settings/secrets.py

3. Edit secrets.py (at least the SECRET KEY variable)

4. If necessary, edit shub/settings/config.py

5. Run docker-compose up -d

6. Registry is available at http://localhost

Thomas Calmant - An Introduction to Docker September 2018 – 80

https://github.com/singularityhub/sregistry
http://localhost

Containers on ARM

I Both Docker & Singularity have packages for ARM

I Only works with arm images
I Most are from armhf on the Docker Hub
I https://hub.docker.com/u/armhf/

I Sample Docker usage on a Raspberry Pi:
I http://blog.alexellis.io/

getting-started-with-docker-on-raspberry-pi/

Thomas Calmant - An Introduction to Docker September 2018 – 81

https://hub.docker.com/u/armhf/
http://blog.alexellis.io/getting-started-with-docker-on-raspberry-pi/
http://blog.alexellis.io/getting-started-with-docker-on-raspberry-pi/

Docker on Windows

I Requires Windows 10 Pro or Windows Server 2016
I with the “Containers” and “Hyper-V” features

I Two base images are available (in multiple versions):
I microsoft/windowsservercore
I microsoft/nanoserver (for 64 bits apps only)

I Many images now have a Windows version
I Python, Node.js, . . .

I docker info:
[...]

Server Version: 18.06.1-ce

Storage Driver: windowsfilter

Default Isolation: hyperv

Kernel Version: 10.0 17134 (17134.1.amd64fre.rs4_release.180410-1804)

Docker Root Dir: C:\ProgramData\Docker

[...]

Thomas Calmant - An Introduction to Docker September 2018 – 82

Thanks for your attention

Credits:
I CommitStrip
I Laurel
I xkcd

Thomas Calmant
thomas.calmant@inria.fr

SED/Tyrex
Montbonnot-Saint-Martin

http://www.commitstrip.com/
http://bloglaurel.deviantart.com/gallery/?catpath=%2F&edit=0&q=docker
https://xkcd.com/
mailto:thomas.calmant@inria.fr

Thomas Calmant - Contenerization with Docker or Singularity : an introduction September 2018 – 84

10
Bonus slides
There’s always more

A word about rkt

I Started in 2014 to “fix” some Docker flaws
I Aims security (versus usability)

I No central root daemon
I Compatible with the OpenContainer specification

I . . . so with Docker images
I Same conflict as “vim vs. emacs” or “etcd vs. consul”

Thomas Calmant - An Introduction to Docker September 2018 – 85

Why not unlocking security?

I docker run -it -d

--privileged --net=host

-v /:/host

-v /dev:/dev -v /run:/run

-e sysimage=/host

debian

I Inside the container:

nsenter --mount=/host/proc/1/ns/mnt -- /bin/bash

Thomas Calmant - An Introduction to Docker September 2018 – 86

Some snippets

I A posteriori port forwarding:
I docker exec <CID> ip addr | grep 172.
I iptables -t nat -A DOCKER -p tcp --dport 9000

-j DNAT --to-destination <CIP>:8080

Thomas Calmant - An Introduction to Docker September 2018 – 87

Thomas Calmant - Contenerization with Docker or Singularity : an introduction September 2018 – 88

11
Scale up with Swarm

What is Docker Swarm ?

I Docker on a multi-host cluster
I Based on overlay networks

(linking local bridge networks)

I Adds the concept of service
I Containers replicated or not on multiple machines
I Restarted automatically
I Migrated on host failure

I At least one manager, no limit on workers
I Managers act like workers
I All nodes keep track of the Swarm state: the Swarm can fully

restart if at least one node stays alive
I swarm commands can only be run on managers

Thomas Calmant - An Introduction to Docker September 2018 – 89

What is Docker Swarm ?

I Docker on a multi-host cluster
I Based on overlay networks

(linking local bridge networks)
I Adds the concept of service

I Containers replicated or not on multiple machines
I Restarted automatically
I Migrated on host failure

I At least one manager, no limit on workers
I Managers act like workers
I All nodes keep track of the Swarm state: the Swarm can fully

restart if at least one node stays alive
I swarm commands can only be run on managers

Thomas Calmant - An Introduction to Docker September 2018 – 89

What is Docker Swarm ?

I Docker on a multi-host cluster
I Based on overlay networks

(linking local bridge networks)
I Adds the concept of service

I Containers replicated or not on multiple machines
I Restarted automatically
I Migrated on host failure

I At least one manager, no limit on workers
I Managers act like workers
I All nodes keep track of the Swarm state: the Swarm can fully

restart if at least one node stays alive
I swarm commands can only be run on managers

Thomas Calmant - An Introduction to Docker September 2018 – 89

Setup a Swarm

I On the first manager host (swarm leader):
I docker swarm init
I docker swarm join-token manager
I docker swarm join-token worker

I On other hosts (swarm nodes):
I docker swarm join --token SWMTKN-...\

<manager-IP>:2377

Thomas Calmant - An Introduction to Docker September 2018 – 90

Nodes Handling

I Nodes inspection:
I docker node ls
I docker node inspect <node>
I docker node ps <node>
I docker node rm <node>

I Node mode switch:
I docker node promote <node>
I docker node demote <node>

Thomas Calmant - An Introduction to Docker September 2018 – 91

Nodes Handling

I Nodes inspection:
I docker node ls
I docker node inspect <node>
I docker node ps <node>
I docker node rm <node>

I Node mode switch:
I docker node promote <node>
I docker node demote <node>

Thomas Calmant - An Introduction to Docker September 2018 – 91

Define a service

I Similar capabilities as the run command
I Useful commands:

I docker service create ...
I docker service ls
I docker service ps <service>
I docker service rm <service>

I Sample:
docker service create --name postgres \

--env POSTGRES_PASSWORD="toto" \

--env POSTGRES_USER=hive \

--env POSTGRES_DB=metastore \

postgres:9.5

Thomas Calmant - An Introduction to Docker September 2018 – 92

Define a service

I Similar capabilities as the run command
I Useful commands:

I docker service create ...
I docker service ls
I docker service ps <service>
I docker service rm <service>

I Sample:
docker service create --name postgres \

--env POSTGRES_PASSWORD="toto" \

--env POSTGRES_USER=hive \

--env POSTGRES_DB=metastore \

postgres:9.5

Thomas Calmant - An Introduction to Docker September 2018 – 92

Docker Swarm: Stacks
I Compatible with docker-compose V3 files

I With some limitations: no links (mandatory use of networks)
I And some new capabilities: deploy configuration

I docker deploy --compose-file ./hdfs stack.yml hdfs

version: ’3’

services:

namenode:

image: registry/hdfs-namenode

env_file: ./hadoop.env

environment:

CLUSTER_NAME: tyrex

ports:

- "8020:8020"

- "50070:50070"

networks:

- tls-net

volumes:

- /local/namenode:/dfs/name

deploy:

placement:

constraints:

- node.hostname == realhost

datanode:

image: registry/hdfs-datanode

env_file: ./hadoop.env

networks:

- tls-net

volumes:

- /local/datanode:/dfs/data

deploy:

mode: global

networks:

tls-net:

external: true

Thomas Calmant - An Introduction to Docker September 2018 – 93

