
Advanced Git

DAVID PARSONS

DAVID PARSONS – ADVANCED GIT 2

Reminders

1

DAVID PARSONS - ADVANCED GIT 3

Generalities

DAVID PARSONS - ADVANCED GIT 4

Two fundamental rules !

• Commit often

• Keep commits small and commit together only related
changes (commit = minimal independent changeset)

• Write clear and informative logs

• A log should enable its reader to:

1. Identify at a glance the rationale behind the commit

2. Have detailed explanation if needed

• Template for logs (from http://git-scm.com/book/ch5-2.html)

Short (50 chars or less) summary of changes

More detailed explanatory text, if necessary. Wrap it to about 72 characters or so.
In some contexts, the first line is treated as the subject of an email and the rest of
the text as the body. The blank line separating the summary from the body is
critical (unless you omit the body entirely).

DAVID PARSONS - ADVANCED GIT 5

Local Repo

From working copy to remote repo

Working
Copy

Staging Area

Committed
Revisions

Remote Repo

Committed
Revisions

Remote Local

NB: This is a “bare” repo, it
has no working copy nor

staging area

DAVID PARSONS - ADVANCED GIT 6

File Status Lifecycle

DAVID PARSONS - ADVANCED GIT 7

Managing conflicts

DAVID PARSONS - ADVANCED GIT 8

Log rev 1

Log rev 2

Log rev 3

Add content to foo

Add file baz

Add content to bar v0.1

Modify bar

Change bar

$ git merge

master

Managing conflicts

r/o/master

DAVID PARSONS - ADVANCED GIT 9

$ git merge

Auto-merging bar

CONFLICT (content): Merge conflict in bar

Automatic merge failed; fix conflicts and then

commit the result.

$

Managing conflicts

Log rev 1

Log rev 2

Log rev 3

Add content to foo

Add file baz

Add content to bar v0.1

Modify bar

Change bar master

r/o/master

DAVID PARSONS - ADVANCED GIT 10

$ git merge

Auto-merging bar

CONFLICT (content): Merge conflict in bar

Automatic merge failed; fix conflicts and then

commit the result.

$

$ cat bar

This is line 1

This is line 2

This is line 3

<<<<<<< HEAD

This is the fourth line

=======

This is line number 4

>>>>>>> featureA

This is line 5

This is line 6

This is line 7

This is line 8

$

Managing conflicts

Log rev 1

Log rev 2

Log rev 3

Add content to foo

Add file baz

Add content to bar v0.1

Modify bar

Change bar master

r/o/master

DAVID PARSONS - ADVANCED GIT 11

$ # You can edit the conflicting files directly

and then stage them and commit, or you can use

a merge tool

$

$ git mergetool

Managing conflicts

Log rev 1

Log rev 2

Log rev 3

Add content to foo

Add file baz

Add content to bar v0.1

Modify bar

Change bar master

r/o/master

DAVID PARSONS - ADVANCED GIT 12

mergetool – p4merge

DAVID PARSONS - ADVANCED GIT 13

$ git config --global merge.tool meld

$ git config --global mergetool.meld.cmd 'meld $LOCAL $MERGED $REMOTE'

$ git config --global mergetool.meld.trustExitCode false

$

Configuring a mergetool

DAVID PARSONS – ADVANCED GIT 14

Things to know

2

DAVID PARSONS - ADVANCED GIT 15

Configuring git

Configure your name and e-mail address (almost mandatory)

$ git config --global user.name "David Parsons"

$ git config --global user.email david.parsons@inria.fr

$

$ # Configure the editor git will open when needed

$ git config --global core.editor nano

$

$ # Setup a few aliases, either simple shorthands...

$ git config --global alias.co checkout

$ git config --global alias.ci commit

$ git config --global alias.s status

$

$ # ... or including options

$ git config --global alias.lg "log --pretty=format:\"%h - %an : %s\""

$

$ # You can even create new commands

$ git config --global alias.unstage "reset HEAD”

DAVID PARSONS - ADVANCED GIT 16

Detached HEAD ?

DAVID PARSONS - ADVANCED GIT 17

Detached HEAD ?

• You are in detached HEAD when you are not “on” any
branch

• Most of the time, this happens when you provide anything
that is not a branch to git checkout. E.g. a tag, a SHA-1,
an indirect reference (HEAD~1)

• You can also use --detach when providing a branch name

• When in detached HEAD, you can commit as you like ;
but be wary of the garbage collector, it could very well
erase your work if you do not pay attention !

• My advice: always create a branch to commit your
work to, it costs nothing to create a “tmp” branch and
delete it when you do not need it any longer.

DAVID PARSONS - ADVANCED GIT 18

Detached HEAD ?
$

Add file foo

Add file bar

Modify foo

v0.1

Add file baz featureA

master

fed7

a56f

abcd

123
4

DAVID PARSONS - ADVANCED GIT 19

Detached HEAD ?
$ git checkout v0.1

Note: checking out 'v0.1'.

You are in 'detached HEAD' state. You can look around, make experimental

changes and commit them, and you can discard any commits you make in this

state without impacting any branches by performing another checkout.

If you want to create a new branch to retain commits you create, you may

do so (now or later) by using -b with the checkout command again. Example:

 git checkout -b new_branch_name

HEAD is now at abcd1b3... Add file bar

$

Add file foo

Add file bar

Modify foo

v0.1

Add file baz featureA

master

fed7

a56
f
abcd

123
4

DAVID PARSONS - ADVANCED GIT 20

Detached HEAD ?
$ git rm foo

$ g ci -m ”Remove file foo”

[detached HEAD be4b243] Remove file foo

 1 file changed, 1 deletion(-)

 delete mode 100644 foo

$

Add file foo

Add file bar

Modify foo

v0.1

Add file baz featureA

master

fed7

a56
f
abcd

123
4

Remove file foo be4b

DAVID PARSONS - ADVANCED GIT 21

Detached HEAD ?
$ git rm foo

$ g ci -m ”Remove file foo”

[detached HEAD be4b243] Remove file foo

 1 file changed, 1 deletion(-)

 delete mode 100644 foo

$ g s

HEAD detached from v0.1

nothing to commit, working directory clean

$

Add file foo

Add file bar

Modify foo

v0.1

Add file baz featureA

master

fed7

a56
f
abcd

123
4

Remove file foo be4b

DAVID PARSONS - ADVANCED GIT 22

Detached HEAD ?
$ git co -b featureB

Switched to a new branch ’featureB’

$

Add file foo

Add file bar

Modify foo

v0.1

Add file baz featureA

master

fed7

a56
f
abcd

123
4

Remove file foo be4b featureB

DAVID PARSONS - ADVANCED GIT 23

Remote tracking and Upstream branches

DAVID PARSONS - ADVANCED GIT 24

Remote tracking branches
$ git branch # List local branches

 featureA

* master

$ git branch -r # List remote-tracking branches

 origin/master

$ git branch -a # List both local and remote-tracking branches

 featureA

* master

 origin/master

Question: what happens when you check out a remote tracking branch?

Add file foo

Add file bar

Modify foo

v0.1

Add file baz featureA

master

765
6
de9
0
abcd

123
4

remotes/origin/master

DAVID PARSONS - ADVANCED GIT 25

Upstream branches
$ git pull # What exactly does git pull do (or try to do)?

Add file foo

Add file bar

Modify foo

v0.1

Add file baz featureA

master

765
6
de9
0
abcd

123
4

remotes/origin/master

DAVID PARSONS - ADVANCED GIT 26

Upstream branches
$ git pull

There is no tracking information for the current branch.

Please specify which branch you want to merge with.

See git-pull(1) for details

 git pull <remote> <branch>

If you wish to set tracking information for this branch you can do so

with:

 git branch --set-upstream-to=origin/<branch> master

$

Add file foo

Add file bar

Modify foo

v0.1

Add file baz featureA

master

765
6
de9
0
abcd

123
4

remotes/origin/master

DAVID PARSONS - ADVANCED GIT 27

Upstream branches
$ git branch -vv

 featureA 7656d7c Add file baz

* master de90ac4 Modify foo

$ git branch -u origin/master

Branch master set up to track remote branch master from origin.

$ git branch -vv

 featureA 7656d7c Add file baz

* master de90ac4 [origin/master] Modify foo

$ git pull

Already up-to-date.

$

Add file foo

Add file bar

Modify foo

v0.1

Add file baz featureA

master

765
6
de9
0
abcd

123
4

remotes/origin/master

DAVID PARSONS – ADVANCED GIT 28

Git internals (dive into .git)

3

DAVID PARSONS – ADVANCED GIT 29

Small interesting tools

4

DAVID PARSONS - ADVANCED GIT 30

Creating and applying patches

DAVID PARSONS - ADVANCED GIT 31

Patches

• For some reason, you could want to send one or more
changesets to a collaborator without actually pushing

• There are basically 2 ways of doing that

 For a single changeset, whether it has been committed
or not, you can use git diff to generate a plain
patch and git apply to apply it

 For one or more committed changesets, you can use
git format-patch to generate a series of
patches and git am to apply them (this will preserve
the original committer name)

DAVID PARSONS - ADVANCED GIT 32

Cherry-picking

DAVID PARSONS - ADVANCED GIT 33

Cherry-picking

• You have spotted a commit made in an otherwise very
messy branch and you would love to retrieve that
commit (and only that one) in your branch ?

 Yes, you could create and apply a patch…

 Or you could use the feature that was created for
that very purpose: cherry-picking

• This is only made possible by sticking to the atomic
commits rule !!!

DAVID PARSONS - ADVANCED GIT 34

Cherry-picking

Cherry-pick a fabulous commit:

$ git cherry-pick <a-fabulous-commit>

[…]

Cherry-pick a sequence of contiguous fabulous commits:

$ git cherry-pick <parent-of-first-in-seq>..<last-in-seq>

[…]

Get bored of typing c h e r r y - p i c k

$ git config --global alias.cp cherry-pick

DAVID PARSONS - ADVANCED GIT 35

Cherry-picking

• Really easy and very handy

• Allows you to apply the changes introduced by one or
more commits on top of HEAD

Add file foo

Modify foo

Add baz featureA

master

fed7

a56
f
123
4

Remove foo be4b

Add file foo

Modify foo

Add baz featureA

master

fed7

a56
f
123
4

Remove foo be4b

Add baz 34f5

$ git cp fed7

DAVID PARSONS - ADVANCED GIT 36

“Partial” commits

DAVID PARSONS - ADVANCED GIT 37

“Partial” commits

• Commits should be atomic: a commit must introduce
a minimal independent changeset

• Most programmers have difficulties focusing on a
single task (did you just correct a typo while scrolling
over the code in the midst of a bugfix ?)

• git add --patch (or -p) is your friend !

• git gui is your better friend, it allows you to add
parts of a file to your staging area on a per-hunk or
even per-line basis

DAVID PARSONS - ADVANCED GIT 38

git add -p

$ git add -p

diff --git a/file b/file

index e72f11f..75ad869 100644

--- a/file

+++ b/file

@@ -1,7 +1,7 @@

 ...

 ...

 ...

- Original line

+ Modified line

 ...

 ...

 ...

Stage this hunk [y,n,q,a,d,/,j,J,g,e,?]?

• Works fine for simple cases (tedious otherwise)

DAVID PARSONS - ADVANCED GIT 39

Using git gui

DAVID PARSONS - ADVANCED GIT 40

Stash

DAVID PARSONS - ADVANCED GIT 41

Stash

You’re working on something and need to switch to something else

$ git co something-else

Error: Your local changes to the following files would be overwritten

by checkout:

[…]

Please, commit your changes or stash them before you can switch

branches.

Aborting

$ g stash [push –m “what you were doing”]

Saved working directory and index state On dev: what you were doing

HEAD is now at 0b0b9eb […]

$ g stash list

stash@{0}: On dev: what you were doing

$

• Literally “garder sous le coude”

DAVID PARSONS - ADVANCED GIT 42

Stash

$ git co something-else # Now you can (WD is clean)

Switched to branch 'something-else’

$

Do whatever you needed to do on something_else

When you want to go back to ‘something’,

Checkout:

$ g co something

Switched to branch 'something’

Recover what you have stashed:

$ g stash pop

You’re back to initial state

$

DAVID PARSONS - ADVANCED GIT 43

Stash

• Literally “garder sous le coude”

• The stash is a stack (thus the push/pop terminology)
of commit objects

• Warning: there can be conflicts when applying (or
pop-ing) stashed changes

In the case of a pop, the corresponding stash will not
be dropped, do not forget to do it after resolving the
conflicts (git stash drop …)

• A (very) useful option: --keep-index (or -k)
stashes only files in the “modified” state

DAVID PARSONS - ADVANCED GIT 44

Git bisect

DAVID PARSONS - ADVANCED GIT 45

git bisect

• Found a bug ?

Have no idea when (or most importantly by whom) it
was introduced ?

• git bisect is your next friend on the list, it will
operate a dichotomic search in your commit tree

DAVID PARSONS - ADVANCED GIT 46

git bisect

Initiate dichotomic search

$ g bisect start

Mark current commit as bad (has bug)

$ g bisect bad

Tell git about a commit that is known to not have the bug

$ g bisect good <a-known-good-commit>

Bisecting: 27 revisions left to test after this (roughly 5 step)

[…]

Not sure about a “good” commit in the first place ?

$ g co <possibly-good-commit>

Check manually => make check ?

If this commit is not “good”, you’ll have to go further back in

your history and check again.

Don’t hesitate to go far far back in your history, the idea is to

not drive the search yourself after all ;)

$ git bisect good

DAVID PARSONS - ADVANCED GIT 47

git bisect

Once you have marked at least one good and one bad commit, the

dichotomic search will start.

Git will checkout commit after commit and ask you to mark them as

good or bad (you can also skip if you’re unsure)

Bisecting: 27 revisions left to test after this (roughly 5 step)

[<sha-1>] <commit-msg>

$ git bisect good|bad

Bisecting: 13 revisions left to test after this (roughly 4 step)

[<sha-1>] <commit-msg>

$ git bisect good|bad

ab23ef is the first bad commit

commit ab23ef

Author: David Parsons <david.parsons@inria.fr>

Date: …

<commit message>

List of modified files in the form:

:<old mode> <new mode> <old blob> <new blob> XY <file name>

DAVID PARSONS - ADVANCED GIT 48

git bisect

Automate search:

$ g bisect start HEAD <known-good>

$ g bisect run make check

[…]

ab23ef is the first bad commit

[…]

Building out of source ? You can use this:

cat > run_make_check.sh

! /bin/bash

cd build

make check

status=$?

cd ..

exit $status

^D

$ chmod u+x run_make_check.sh

$ g bisect run run_make_check.sh

DAVID PARSONS – ADVANCED GIT 49

Time for Practical Work !

• Retrieve exercice document :
http://sed.inrialpes.fr/advancedgit-tuto

 To Do : Section 1 + Section 2

http://sed.inrialpes.fr/advancedgit-tuto
http://sed.inrialpes.fr/advancedgit-tuto
http://sed.inrialpes.fr/advancedgit-tuto

DAVID PARSONS – ADVANCED GIT 50

Rewriting History

5

DAVID PARSONS - ADVANCED GIT 51

Rewriting History ?

You’ve just commited something and realize you forgot to add a file

$ git add the_forsaken_file

$ git commit --amend

No one saw you ;)

Remember you have a local repository ?

Everything you have not published (i.e. pushed) yet is strictly local to your repo.
It is known by you and no one else. Since then, what is stopping you from
modifying it ?

This is one of my favourite things about git, I can be stupid and appear not to be !

WARNING: Do not do that if you’ve pushed the faulty commit !!!!!

DAVID PARSONS - ADVANCED GIT 52

commit --amend

After using git commit -–amend,
let’s look at what our commit graph looks like :

“Replacement”
commit

Faulty commit (e.g. missing a file).

This commit is not referred to by any ref.
It will eventually be garbage collected.

…

Add new class Foo master

Add new class Foo

DAVID PARSONS - ADVANCED GIT 53

rebase

• Rebase allows you to linearize a branching tree structure

• Rebase literally means “set a new base” (for a branch)

• In other words, rebasing a branch consists in telling git to :
1. “Pick” a branch
2.“Cut” it (somewhere)
3. “Graft” it (somewhere else)

Add file foo

Modify foo

Add baz other

current

fed7

a56
f
123
4

Remove foo be4b

Add file foo

Modify foo

Add baz other fed7

a56
f
123
4

be4b

current Remove foo ef56

Rebased commit

Original commit

DAVID PARSONS - ADVANCED GIT 54

rebase: default behaviour

By default, git rebase:

• picks the current branch
• cuts it at its LCA (last common ancestor) with its upstream branch (if any)
• graft it onto its upstream branch

 If your branch and its upstream were in sync, this means you’ve
achieved to do nothing in a complicated way.

 If you had a branching tree structure (e.g. after fetching your
colleagues’ work – see example above), you’ve replayed your changes
on top of your colleagues’.

This is safe since it will only alter those commits you haven’t pushed yet

Add file foo

Modify foo

Add baz

master

fed7

a56
f
123
4

Remove foo be4b

r/o/master

DAVID PARSONS - ADVANCED GIT 55

rebase: one argument form

Branch master has been updated since you
started to write your feature.
You would like your feature to be up-to-date
(to propose it as a pull-request ?)

$ git rebase master # Use master for cut and graft steps

First, rewinding head to replay your work on top of it…

Applying: …

Rebased commits

Original commits

Add file foo

Modify foo

Add baz featureA

master

fed7

a56
f
123
4

Remove foo be4b

Add file foo

Modify foo

Add baz

master

fed7

a56
f
123
4

Remove foo be4b

Modify foo

Add baz featureA

3f6e

ac7e

DAVID PARSONS - ADVANCED GIT 56

rebase: pick, cut, graft

• git rebase simplified synopsis:

$ git rebase […] [--onto <newbase>] [<upstream> [<branch>]]

What git rebase does (this is a lie…):
• picks ‘branch’
• cuts it at the LCA (last common ancestor) of ‘upstream’ and ‘branch’
• grafts it onto newbase

Actually,
• If ‘branch’ is specified, git rebase will be preceded by a git checkout ‘branch’
• Nothing is “cut” and the LCA is all but a lie... The changes made by commits in ‘branch’

that are not in ‘upstream’ will be recorded and then replayed onto the new base. That
means a cherry-picked commit will be ignored (and that is what we want !)

DAVID PARSONS - ADVANCED GIT 57

git rebase

Log rev 1

Log rev 2

Log rev 3

Add content to foo

Add file baz

Add content to bar v0.1

Modify bar

Change bar master

remotes/origin/master

$ git fetch

$ # About to run git rebase

DAVID PARSONS - ADVANCED GIT 58

$ git fetch

$ git rebase

…

$

Modify bar

master

Change bar

Rebased commit

Original commit
(master was here)

Change bar remotes/origin/master

Log rev 1

Log rev 2

Log rev 3

Add content to foo

Add file baz

Add content to bar v0.1

git rebase

DAVID PARSONS - ADVANCED GIT 59

Rebase only local commits

Rebasing basically means re-writing the history of what happened.
 This is a very powerful feature

But as always, “great power comes with great responsibility” :

DO NOT REBASE COMMITS THAT EXIST OUTSIDE YOUR
REPOSITORY

DAVID PARSONS - ADVANCED GIT 60

merge or rebase ?

DAVID PARSONS - ADVANCED GIT 61

Which one would you prefer ?

Merge Rebase

merge or rebase ?

DAVID PARSONS - ADVANCED GIT 62

merge or rebase ?

Or maybe this mixed one ?

Merge Rebase Mixed

DAVID PARSONS - ADVANCED GIT 63

merge or rebase ?

G: So, sometimes you do want a “true merge”.

P: Yes, but that is what git merge does right ?

G: True… except when a fast-forward merge is possible.

P: fast-forward merge ?

C0

C3

C2

feature

dev

C1
$ git merge feature

C0

C3

C2

feature dev

C1

DAVID PARSONS - ADVANCED GIT 64

merge or rebase ?

C0

C3

C2

feature

dev

C1

C0

C3

C2

dev

C1

feature

Merged branch feature into dev

$ git merge --no-ff feature

DAVID PARSONS - ADVANCED GIT 65

Prefer fetch to pull

The pull command is equivalent to a fetch followed by a merge.

So what you are really asking git to do when you pull is to merge your work
with something you know nothing about (!)

To come around this problem, start by fetching what is new from the remote
and have a look at it.

If what you really want is a merge, you can still do it. But this time, you will
do it knowingly.

DAVID PARSONS - ADVANCED GIT 66

Interactive rebase

DAVID PARSONS - ADVANCED GIT 67

Interactive rebase

Remember what we did with git commit --amend ?

Now imagine you did the exact same thing but have already added a few commits
on top of the faulty one.

You can not use commit –amend because it only allows to modify the commit
that is referenced by HEAD.

This is when interactive rebase becomes handy.

DAVID PARSONS - ADVANCED GIT 68

Interactive rebase

$ git rebase –interactive

or

$ git rebase -i

Let’s see what the command looks like :

What you’re rebasing and onto what, follows the same rules as non-interactive
rebase.

The difference is that you will get to decide what to do with each commit to be
rebased instead of unconditionally “pick” them

DAVID PARSONS - ADVANCED GIT 69

Interactive rebase

DAVID PARSONS - ADVANCED GIT 70

Interactive rebase

DAVID PARSONS - ADVANCED GIT 71

Interactive rebase

…

third commit (should have been before second commit)

second commit

first commit

Correcting first commit

second commit feature

first commit

commit 1bis (was « third commit … »)

DAVID PARSONS – ADVANCED GIT 72

Undoing things

6

DAVID PARSONS - ADVANCED GIT 73

Unstage

$ git status

 (use "git reset HEAD ..." to unstage)

$ git reset HEAD <file>

$ git config --global alias.unstage "reset HEAD"

$ git unstage

Unstaging an entire file is very easy, git tells you how to do it :

Do not want to have to remember this command ? Create an alias :

If you do not want to unstage the entire file but only some parts of it, the easiest
solution is probably : git gui.
But you could also use : git reset -p

DAVID PARSONS - ADVANCED GIT 74

Unmodify a file

$ git status

 (use "git checkout -- <file>..." to discard changes …)

$ git co -- <file>

$ git config --global alias.unmod "checkout --"

$ git unmod <file>

Again, git is kind enough to prompt you for actions you might want to do:

And again you can create an alias:

If you do not want to unmodify a whole file but only some parts of it, the easiest
solution is probably a difftool.
But you could also use git co -p

DAVID PARSONS - ADVANCED GIT 75

Undo a commit

$ git rebase -i

...

$ git revert <commit-to-undo>

• If the commit has not been published yet

This way, you can thoroughly remove the faulty commit from the history

This will create a new commit whose diff is the inverse of that of
the commit to undo

• If the commit has been published

DAVID PARSONS - ADVANCED GIT 76

git reset

C0

C3

C2

feature

master

C1

C0

C3

C2

feature

master

C1

git reset can become very handy when things are beginning to get awry.

It allows you to make a branch point anywhere you want.

Let’s say you have committed stuff in master when what you really wanted was to
commit them in feature :

What you want What you have

DAVID PARSONS - ADVANCED GIT 77

$ git co feature

git reset

C0

C3

C2

feature

master

C1

C0

C3

C2

feature

master

C1

What you want

What you have

DAVID PARSONS - ADVANCED GIT 78

$ git co feature

Switched to branch 'feature'

$ # ?

git reset

C0

C3

C2

feature

master

C1

What you want

What you have

C0

C3

C2

feature

master

C1

DAVID PARSONS - ADVANCED GIT 79

$ git co feature

Switched to branch 'feature'

$ git (merge | rebase | reset --hard) master

git reset

C0

C3

C2

feature

master

C1

What you want

What you have

C0

C3

C2

feature

master

C1

DAVID PARSONS - ADVANCED GIT 80

$ git co feature

Switched to branch 'feature'

$ git (merge | rebase | reset --hard) master

...

$

git reset

C0

C3

C2

feature master

C1

What you want

What you have

C0

C3

C2

feature

master

C1

DAVID PARSONS - ADVANCED GIT 81

$ git co feature

Switched to branch 'feature'

$ git (merge | rebase | reset --hard) master

...

$ git co master

Switched to branch 'master'

$ # ?

git reset

C0

C3

C2

feature master

C1

What you want

What you have

C0

C3

C2

feature

master

C1

DAVID PARSONS - ADVANCED GIT 82

$ git co feature

Switched to branch 'feature'

$ git (merge | rebase | reset --hard) master

...

$ git co master

Switched to branch 'master'

$ git reset --hard bdfa # ref-to-C0

git reset

C0

C3

C2

feature master

C1

What you want

What you have

C0

C3

C2

feature

master

C1

DAVID PARSONS - ADVANCED GIT 83

$ git co feature

Switched to branch 'feature'

$ git (merge | rebase | reset --hard) master

...

$ git co master

Switched to branch 'master'

$ git reset --hard bdfa # ref-to-C0

HEAD is now at bdfa5 C0

$

git reset

C0

C3

C2

feature

master

C1

What you want

What you have

C0

C3

C2

feature

master

C1

DAVID PARSONS - ADVANCED GIT 84

$ git co feature

Switched to branch 'feature'

$ git (merge | rebase | reset --hard) master

...

$ git co master

Switched to branch 'master'

$ git reset --hard bdfa5a # ref-to-C0

HEAD is now at bdfa5ab C0

$ git co feature

$

git reset

C0

C3

C2

feature

master

C1

What you want

BINGO !

What you have

C0

C3

C2

feature

master

C1

DAVID PARSONS - ADVANCED GIT 85

soft, mixed or hard ?

There are 3 main options to git reset :
 soft, mixed and hard

Here is how to use the main options :
 --soft does only 1.
 --mixed does 1. and 2.
 --hard goes all the way to 3.

There are also 3 steps that can be done :
1.Move the current branch
2.Update the staging area
3.Update the working directory

DAVID PARSONS - ADVANCED GIT 86

Cheat sheet
head index work dir wd safe

Commit Level

reset --soft [commit] REF NO NO YES

reset [commit] REF YES NO YES

reset --hard [commit] REF YES YES NO

checkout [commit] HEAD YES YES YES

File Level

reset (commit) [file] NO YES NO YES

checkout (commit) [file] NO YES YES NO

DAVID PARSONS - ADVANCED GIT 87

More undoing …

$ git filter-branch –tree-filter 'rm -f ’ HEAD

git-filter-branch is a very powerful tool
 it allows you to apply “filters” on each revision of a branch

This can be useful e.g. when you’ve commited a file that should
never have been added (binary file, confidential information, …)

An alternative to git-filter-branch for “cleansing bad data
out of a git repo” is worth mentioning : BFG Repo-Cleaner.
See : https://rtyley.github.io/bfgrepo-cleaner/

DAVID PARSONS – ADVANCED GIT 88

Time for Practical Work !

• Document reference :
http://sed.inrialpes.fr/advancedgit-tuto

 To Do : Section 3

http://sed.inrialpes.fr/advancedgit-tuto
http://sed.inrialpes.fr/advancedgit-tuto
http://sed.inrialpes.fr/advancedgit-tuto

DAVID PARSONS – ADVANCED GIT 89

Managing remotes

7

DAVID PARSONS - ADVANCED GIT 90

About remotes

• Remotes are repositories other than the local one with
which you may want to synchronize.

• origin is the default name of the default remote

• Add a remote:
 git remote add other git://[...]

• Fetch remote branches:
 git fetch other

• Push master to remotes/other/master
 git push other master

DAVID PARSONS - ADVANCED GIT 91

Annoying things

• Delete a remote branch :

 git push origin --delete featA

• Push a tag :

 git push origin mytag

or

 git push --tags

DAVID PARSONS - ADVANCED GIT 92

Multiple remotes, pull-requests

Many projects on GitHub/Lab allow third-party contributions by a
mechanism called pull-request.
This mechanism can also be used internally for code review.

Multiple remotes can be very useful in the context of workflows
including pull-requests but also in other cases (git annex,
migrations, …).

DAVID PARSONS – ADVANCED GIT 93

Other interesting things

8

DAVID PARSONS - ADVANCED GIT 94

git svn

Create a file for author mapping

echo “dpa = David Parsons <david.parsons@inria.fr>” > authors

Clone an existing svn repo

$ git svn clone <url> --authors-file=authors local-git-repo-name

$ git svn rebase

gets new revs from svn repo and rebase your work (if any) on top of it

“Push” your changes

$ git svn dcommit

Allows to work locally with a git repo and sync it with an svn remote.
As a corollary, it allows to migrate from svn to git

Other options of git svn clone I have found useful :
• --stdlayout if the svn repo follows the trunk/branches/tags layout
• --ignore-paths / --include-paths
• --authors-prog

DAVID PARSONS - ADVANCED GIT 95

git subrepo

Clone an existing repo as a subrepo (in a subdirectory)

$ git subrepo clone <url> <subdir>

Create an embedded git repo

$ git subrepo init <subdir>

Pull from upstream

$ git subrepo pull <subdir>

Push to upstream

$ git subrepo push <subdir>

Alternatives :
 submodules
 subtrees

git subrepo allows you to work with embedded git repositories

DAVID PARSONS - ADVANCED GIT 96

git annex

Prepare an existing git repo for git annex

$ git annex init

$ git annex add

$ git commit

$ # => commits a symlink and stores the file in .git/annex

git annex provides an interesting solution to version large files.
It basically handles symlinks and provides tools to manage the actual
files behind the links.

git annex can be used with a wide variety of types of remote
storage spaces (special remotes).

Alternatives :
 lfs

DAVID PARSONS - ADVANCED GIT 97

Hooks

Hooks are custom scripts that can be automatically triggered when
certain important actions occur.

Client-side hooks :

pre-commit, prepare-commit-msg, commit-msg,

post-commit, pre-rebase, post-rewrite, post-checkout,

post-merge, pre-push, pre-auto-gc

Server-side hooks :
pre-receive, update, post-receive

On platforms such as forges or GitHubs/Labs, some (many ?)
predefined hooks can be set up in a matter of minutes.

Hooks can be used e.g. to send notifications, run tests prior to
commits, enforce any kind of policies, …

DAVID PARSONS - ADVANCED GIT 98

rerere

One of the most annoying things that a git-user has to do is to resolve
conflicts.

Even more annoying would be to have to resolve the same conflict several
times.
Sadly, this happens. Mostly when relying heavily on rebase (?)

rerere helps you avoiding this situation by reusing recorded resolutions .

Configure rerere functionnality for git

git config --global rerere.enabled true

LIEU
LOCALISATION

www.inria.fr
Antenne INRIA Lyon la Doua

www.inria.fr

Thank you

DAVID PARSONS – ADVANCED GIT 100

Time for Practical Work !

• Document reference :
http://sed.inrialpes.fr/advancedgit-tuto

 To Do : Section 4

http://sed.inrialpes.fr/advancedgit-tuto
http://sed.inrialpes.fr/advancedgit-tuto
http://sed.inrialpes.fr/advancedgit-tuto

