
Cluster tutorial 07-04-2015, page 1/21

½ day cluster Tutorial

Matthijs Douze (SED)

Pierre Neyron (CNRS)

Jean-François Scariot (SIC)

Cluster tutorial 07-04-2015, page 2/21

Objectives

 At noon: ready to run parallel computations
► Crash-course – simplifications

 Basics of parallelization
► What you can expect from a cluster

 Accessible platforms
► For INRIA members
► Access conditions

 Exercises
► Simple application cases
► Main steps of the parallelization

Cluster tutorial 07-04-2015, page 3/21

Basics of distributed computing

Matthijs Douze

Cluster tutorial 07-04-2015, page 4/21

Tasks and processors

 Task = unit of computation
► Code
► Inputs
► Outputs

 Processor
► Executes task code
► We have a number of them
► Task on a processor ->processing time

 Scheduling
► Assignment of tasks to processors
► Over time
► Gantt diagram

Task

 t

pr
oc

es
so

rs

Cluster tutorial 07-04-2015, page 5/21

Task dependencies
 Output of one task required as input to another task

► Dependency graph
► Determines ordering of tasks

 Sequential
► Cumsum

 Tree merge

 Parallel + 1 merge operation

Task Task Task Task

Cluster tutorial 07-04-2015, page 6/21

What you can expect

 Lower bounds on total processing time

 Lower bound 1:

 sequential processing time
 nb of processors

 Lower bound 2:
► Critical path = longest path in the dependency graph
► Bound = sum of times for tasks in critical path

 Lower bounds are not reached in practice
► Task startup and cleanup overhead
► Communication overhead
► Duplicated work between processors
► Data loaded from a central disk (or other shared resource)

Cluster tutorial 07-04-2015, page 7/21

When distribute?

 A cluster is expensive: don't waste resources

 Machine cost per day = 5 euro
► 3000 euro / 5 years = ~2 euro
► 250W + 100W electricity = 1.5 euro
► Sys admin (1 engineer / 100 machines) = 1.4 euro
► Amazon cloud 10$/day/machine

 Shared resource
► Social pressure from administrators and other users
► Should (be able to) justify your usage

 When not distribute?
► I/O bound tasks (example: grep, small files are worst)
► Not parallelizable
► Useless experiments

 Hard to evaluate...
 K-means on 10^9 pts for 1000 centroids...
 Having Tflops available does not mean you should use them

Cluster tutorial 07-04-2015, page 8/21

Embarassingly parallel

 Parallel case with lots of small independent tasks, examples:
► 1s processing on 10000 images
► Evaluate a grid of 10x10x10 parameters, each evaluation is short

 Easiest to parallelize

 Choice of granularity
► Tasks can be clustered together -> jobs
► 100*100 or 10*1000 jobs ?

 We focus on this case
► Inputs = files and command line params
► Outputs = files, stdout

more flexible
scheduling

coarse fine
Less
startup/stop
overhead

Cluster tutorial 07-04-2015, page 9/21

Parallelization on one machine

 Not vectorization
► SIMD: SSE
► Co-processor GPU: Cuda / OpenCL

 Exploit several cores

 Multithreading
► OpenMP

 Multiprocessing at shell level

 Demo...
► echo {1..10} | xargs -n 1 -P 4 ./task.sh

 Orthogonal with cluster
► Tasks run on cluster can be multi-threaded
► 1 cluster job =

 1 machine (node) or
 1 core

 We concentrate on 1-thread tasks

Cluster tutorial 07-04-2015, page 10/21

APIs for distributed programming

 MPI (Message Passing Interface)
► Transfers blocks of data between processes
► High level of synchronization
► All started simultaneously

 Map-reduce
► Map: process input with mapping function, output a dictionary
► Reduce: data for each dict key is combined by a reduction function
► Hadoop: focus on robustness to failures

 + tons of others
► Everybody has his collection of scripts / abstraction layers...

 This tutorial's approach:
► Start from most basic tools
► Enough for our scales and types of clusters...

 10-100 machines
 Data central
 No hardware failures (recover by hand)

Cluster tutorial 07-04-2015, page 11/21

Parallelization on machines in your neighborhood

 With a set of machines
► ssh to them
► cd to the correct directory
► Run the task

 Automate this with a tiny script
► Uses a lock file
► Demo...

Cluster tutorial 07-04-2015, page 12/21

Parallelization on a cluster

 Cluster = set of computers
► Similar to desktop machines
► Uniform: same OS, centralized storage
► Intel + 64 bit Linux

 Batch scheduler
► Maintains a database of jobs
► Decides what jobs are running
► Starts and kills the jobs
► Knows the state of the processors: alive, dead, suspected....

 demo...

Cluster tutorial 07-04-2015, page 13/21

Basics of scheduling

 OAR scheduler (others work similarly)

 Scheduling decisions based on:
► Default = FIFO
► Dependencies
► fair usage
► Walltime = max time a job is allowed to run
► Ressources required by job (nb of cores or nb of processors)

 Interactions
► oarsub: submitting a job = command line
► oarstat: query state of job
► oardel: cancels submitted or running job

 Besteffort jobs
► Submit with oarsub -tbesteffort -tidempotent
► Killed when normal job submitted, restarted afterwards
► Flood the cluster without feeling guilty

Cluster tutorial 07-04-2015, page 14/21

Length of a job
 Execution time limited by walltime

► Try to set realistic walltime...

 Run this on 3 processors with FIFO scheduler:

 Checkpointing:
► Be able to recover from a crash (mem overflow,

maintenance, hardware failure, ...)
► Store state at time intervals or on signal
► OAR can be instructed to send a signal before kill

 For embarassingly parallel:
► short and 1-core or 1-processor
► Do not submit more than 500 processes at a time

Task 1
Task 2

Task 3
Task 4

Task 5
Task 6
Task 7

1-10 s: scheduler
action

1-3 minutes: what
we target in the
assignments

30 min: typical
length of a job

2 h = default
walltime

1 day on 80% of
cluster = typical
MPI computation

10 days: significant
risk of node reboot

Cluster tutorial 07-04-2015, page 15/21

Job babysitting

 Always know what your job is doing
► First few minutes: did my jobs launch?
► Then every few hours: how are my jobs doing? Did they give partial

results?

 On the frontal node
► Oarstat -f -j <job id>
► tail -f OAR.*

 Make sure your program says what it does

 On the node
► oarsub -C: connect to it
► top: what's running on the node
► strace, ls /proc/pid/fd: what I/O is a process doing?
► gdb –pid XXX: connect to running process

Cluster tutorial 07-04-2015, page 16/21

Assignments

Cluster tutorial 07-04-2015, page 17/21

Assignments
 3 embarassingly parallel computations

► I/O via files & parameters

 Get the code & data to the cluster

 Sequential code provided
► Small run in a few minutes
► Large run must be distributed

 Evaluate runtime
► Interactive session: oarsub -I
► Measure runtime on small case
► Extrapolate to larger case using complexity

 Split into tasks that last 1 to 3 minutes (should be ~30 min for real
application case)
► Write code for a task that can be launched with oarsub
► Job's command line argument = what fraction of the work to do
► Job output = file with partial result
► Write merging code to get the same output as the sequential code

 Run and monitor the jobs...

Cluster tutorial 07-04-2015, page 18/21

C assignment

 Compute the multiplication between 2 square matrices
► C-storage
► Triple loop (never do this in reality, use BLAS!)

 Versions:
► Small: 1000x1000 matrices
► Large: 5000x5000 matrices

 Split the computation in slices
► Each task computes slices of lines of the result

 Merging code
► Stack the slices

 Harder: combine with multithreading
► #pragma omp parallel for
► Reserve required # cores

Cluster tutorial 07-04-2015, page 19/21

Matlab assignment

 Use a circle detector on a set of images
► Extremely slow

 Matlab not available on cluster:
► Would consume too many licenses

anyway

 Solutions:
► Run with octave (what we do here)
► Compile with the matlab compiler

 Make the script dependent on command-line parameters
► Matlab: make a function with string parameters
► Octave: argv()

 Write merging code

 Bonus: mcc
► Compile, use isdeployed
► Copy matlab runtime to cluster

Cluster tutorial 07-04-2015, page 20/21

Python assignment

 Program that
► Process a set of text files extracted from PDF
► Construct the document-word matrix (sparse matrix)
► Three passes:

 Collect all words (pass 1)
 Select words to make a dictionary (remove too frequent and infrequent words)
 Build matrix (pass 2)

 Cases
► Small: 2700 files
► Large: 17000 files

 Parallelize only matrix build
► Just reuse the dictionary from the small case (pass 1)

 Bonus: how can we avoid small file I/O
► Unzip on-the-fly to temp directory

Cluster tutorial 07-04-2015, page 21/21

Conclusion

 Cluster = little more than many machines piled up

 Basic usage:
► Easy
► Mostly standard tools + batch scheduler

 Advanced usage:
► You may never need it... (I did not)

Cluster tutorial 07-04-2015, page 22/21

The central tool : ssh

 All communication goes via ssh

 Ssh tunnels through bastion
► Tunnel to connect directly to a machine via another

 ssh -o ProxyCommand="ssh douze@bastion.inrialpes.fr -W access1-cp:22 "
douze@localhost -o StrictHostKeyChecking=no

► scp: copy data
 scp -o ProxyCommand="ssh douze@bastion.inrialpes.fr -W access1-cp:22

" .bashrc douze@localhost:/tmp
► sshfs: mount directory (linux and mac)

 sshfs -o ProxyCommand="ssh douze@bastion.inrialpes.fr -W access1-cp:22 "
douze@localhost:/services/scratch/lear/douze /mnt/cluster_scratch

 OAR's ssh wrappers
► Some black magic to isolate the jobs on a node
► oarsub -C (frontal -> node)
► oarsh (node -> node)

 When reserving several nodes for 1 job

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

